Minimal Foliations for the High-Dimensional Frenkel-Kontorova Model

被引:0
|
作者
Xueqing Miao
Jianhua Ge
Wenxin Qin
Yanan Wang
机构
[1] Nantong University,School of Sciences
[2] Soochow University,Department of Mathematics
[3] Nanjing Normal University,School of Mathematical Sciences
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
Aubry-Mather theory; Frenkel-Kontorova model; minimal foliation; depinning force; gradient flow; 37C65; 37K60; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
For the high-dimensional Frenkel-Kontorova (FK) model on lattices, we study the existence of minimal foliations by depinning force. We introduce the tilted gradient flow and define the depinning force as the critical value of the external force under which the average velocity of the system is zero. Then, the depinning force can be used as the criterion for the existence of minimal foliations for the FK model on a ℤd lattice for d > 1.
引用
收藏
页码:564 / 582
页数:18
相关论文
共 50 条
  • [1] Minimal Foliations for the High-Dimensional Frenkel-Kontorova Model
    Miao, Xueqing
    Ge, Jianhua
    Qin, Wenxin
    Wang, Yanan
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 564 - 582
  • [2] MINIMAL FOLIATIONS FOR THE HIGH-DIMENSIONAL FRENKEL-KONTOROVA MODEL
    缪雪晴
    葛建华
    秦文新
    王亚南
    ActaMathematicaScientia, 2023, 43 (02) : 564 - 582
  • [3] Minimizers with Bounded Action for the High-Dimensional Frenkel-Kontorova Model
    Miao, Xue-Qing
    Wang, Ya-Nan
    Qin, Wen-Xin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (08):
  • [4] Minimal Configurations for the Frenkel-Kontorova Model on a Quasicrystal
    Jean-Marc Gambaudo
    Pierre Guiraud
    Samuel Petite
    Communications in Mathematical Physics, 2006, 265 : 165 - 188
  • [5] Minimal configurations for the Frenkel-Kontorova model on a quasicrystal
    Gambaudo, JM
    Guiraud, P
    Petite, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) : 165 - 188
  • [6] The Frenkel-Kontorova Model
    Floría, LM
    Baesens, C
    Gómez-Gardeñes, J
    DYNAMICS OF COUPLED MAP LATTICES AND OF RELATED SPATIALLY EXTENDED SYSTEMS, 2005, 671 : 209 - 240
  • [7] Quantum Frenkel-Kontorova model
    Hu, BB
    Li, BW
    PHYSICA A, 2000, 288 (1-4): : 81 - 97
  • [8] NONANALYTIC FRENKEL-KONTOROVA MODEL
    SHI, JC
    HU, BB
    PHYSICAL REVIEW A, 1992, 45 (08): : 5455 - 5461
  • [9] Quantum Frenkel-Kontorova model
    Ho, CL
    Chou, CI
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 399 - 402
  • [10] DISLOCATION GENERATION IN THE TWO-DIMENSIONAL FRENKEL-KONTOROVA MODEL AT HIGH STRESSES
    LOMDAHL, PS
    SROLOVITZ, DJ
    PHYSICAL REVIEW LETTERS, 1986, 57 (21) : 2702 - 2705