Line defects in the 3d Ising model

被引:0
|
作者
M. Billó
M. Caselle
D. Gaiotto
F. Gliozzi
M. Meineri
R. Pellegrini
机构
[1] Università di Torino and INFN — Sezione di Torino,Dipartimento di Fisica
[2] Perimeter Institute for Theoretical Physics,undefined
[3] Scuola Normale Superiore and INFN — Sezione di Piase,undefined
关键词
Conformal and W Symmetry; Lattice Quantum Field Theory; Discrete and Finite Symmetries; Global Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the properties of the twist line defect in the critical 3d Ising model using Monte Carlo simulations. In this model the twist line defect is the boundary of a surface of frustrated links or, in a dual description, the Wilson line of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{Z}}_2} $\end{document} gauge theory. We test the hypothesis that the twist line defect flows to a conformal line defect at criticality and evaluate numerically the low-lying spectrum of anomalous dimensions of the local operators which live on the defect as well as mixed correlation functions of local operators in the bulk and on the defect.
引用
收藏
相关论文
共 50 条
  • [1] Line defects in the 3d Ising model
    Billo, M.
    Caselle, M.
    Gaiotto, D.
    Gliozzi, F.
    Meineri, M.
    Pellegrini, R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [2] The magnetization of the 3D Ising model
    Talapov, AL
    Blote, HWJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5727 - 5733
  • [3] The anisotropic 3D Ising model
    Zandvliet, H. J. W.
    Saedi, A.
    Hoede, C.
    [J]. PHASE TRANSITIONS, 2007, 80 (09) : 981 - 986
  • [4] Superconformal Line Defects in 3D
    Penati, Silvia
    [J]. UNIVERSE, 2021, 7 (09)
  • [5] The dual gonihedric 3D Ising model
    Johnston, D. A.
    Ranasinghe, R. P. K. C. M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (29)
  • [6] New method for the 3D Ising model
    Chung, S. G.
    [J]. PHYSICS LETTERS A, 2006, 359 (06) : 707 - 711
  • [7] SIMULATIONS OF THE 3D ISING-MODEL AT CRITICALITY
    BLOTE, HWJ
    KAMIENIARZ, G
    [J]. ACTA PHYSICA POLONICA A, 1994, 85 (02) : 395 - 398
  • [8] DROPLET DYNAMICS IN THE 3D ISING-MODEL
    MIRANDA, EN
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 179 (03) : 340 - 343
  • [9] Clifford algebra approach of 3D Ising model
    Zhidong Zhang
    Osamu Suzuki
    Norman H. March
    [J]. Advances in Applied Clifford Algebras, 2019, 29
  • [10] Combinatorial and topological approach to the 3D Ising model
    Regge, T
    Zecchina, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (04): : 741 - 761