Energy-Preserving Integrators and the Structure of B-series

被引:0
|
作者
Elena Celledoni
Robert I. McLachlan
Brynjulf Owren
G. R. W. Quispel
机构
[1] NTNU,Department of Mathematical Sciences
[2] Massey University,Institute of Fundamental Sciences
[3] La Trobe University,Mathematics Department
关键词
B-series methods; Symplectic integration; Energy preservation; Trees; Conjugate methods; 65P10; 65D30; 05C05; 37M15;
D O I
暂无
中图分类号
学科分类号
摘要
B-series are a powerful tool in the analysis of Runge–Kutta numerical integrators and some of their generalizations (“B-series methods”). A general goal is to understand what structure-preservation can be achieved with B-series and to design practical numerical methods that preserve such structures. B-series of Hamiltonian vector fields have a rich algebraic structure that arises naturally in the study of symplectic or energy-preserving B-series methods and is developed in detail here. We study the linear subspaces of energy-preserving and Hamiltonian modified vector fields which admit a B-series, their finite-dimensional truncations, and their annihilators. We characterize the manifolds of B-series that are conjugate to Hamiltonian and conjugate to energy-preserving and describe the relationships of all these spaces.
引用
收藏
页码:673 / 693
页数:20
相关论文
共 50 条
  • [1] Energy-Preserving Integrators and the Structure of B-series
    Celledoni, Elena
    McLachlan, Robert I.
    Owren, Brynjulf
    Quispel, G. R. W.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) : 673 - 693
  • [2] Structure of B-series for Some Classes of Geometric Integrators
    Celledoni, Elena
    McLachlan, Robert I.
    Owren, Brynjulf
    Quispel, G. R. W.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 739 - +
  • [3] Energy-Preserving Integrators for Fluid Animation
    Mullen, Patrick
    Crane, Keenan
    Pavlov, Dmitry
    Tong, Yiying
    Desbrun, Mathieu
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03):
  • [4] On conjugate symplecticity of B-series integrators
    Hairer, Ernst
    Zbinden, Christophe J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 57 - 79
  • [5] Trees, B-series and exponential integrators
    Butcher, J. C.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (01) : 131 - 140
  • [6] Linear energy-preserving integrators for Poisson systems
    Cohen, David
    Hairer, Ernst
    BIT NUMERICAL MATHEMATICS, 2011, 51 (01) : 91 - 101
  • [7] Energy-Preserving Integrators Applied to Nonholonomic Systems
    Elena Celledoni
    Marta Farré Puiggalí
    Eirik Hoel Høiseth
    David Martín de Diego
    Journal of Nonlinear Science, 2019, 29 : 1523 - 1562
  • [8] ENERGY-PRESERVING INTEGRATORS FOR STOCHASTIC POISSON SYSTEMS
    Cohen, David
    Dujardin, Guillaume
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (08) : 1523 - 1539
  • [9] Energy-Preserving Integrators Applied to Nonholonomic Systems
    Celledoni, Elena
    Puiggali, Marta Farre
    Hoiseth, Eirik Hoel
    Martin de Diego, David
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1523 - 1562
  • [10] Linear energy-preserving integrators for Poisson systems
    David Cohen
    Ernst Hairer
    BIT Numerical Mathematics, 2011, 51 : 91 - 101