An algebraic analysis of conchoids to algebraic curves

被引:0
|
作者
J. R. Sendra
J. Sendra
机构
[1] Universidad de Alcalá,Dpto. de Matemáticas
[2] Univ.Politécnica de Madrid,Dep. de Matemáticas. E.U.I.T. Telecomunicación
关键词
Irreducible Component; Special Component; Plane Curve; Algebraic Curve; Algebraic Curf;
D O I
暂无
中图分类号
学科分类号
摘要
We study the conchoid to an algebraic affine plane curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}$$\end{document} from the perspective of algebraic geometry, analyzing their main algebraic properties. Beside \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}$$\end{document} , the notion of conchoid involves a point A in the affine plane (the focus) and a non-zero field element d (the distance). We introduce the formal definition of conchoid by means of incidence diagrams. We prove that the conchoid is a 1-dimensional algebraic set having at most two irreducible components. Moreover, with the exception of circles centered at the focus A and taking d as its radius, all components of the corresponding conchoid have dimension 1. In addition, we introduce the notions of special and simple components of a conchoid. Furthermore we state that, with the exception of lines passing through A, the conchoid always has at least one simple component and that, for almost every distance, all the components of the conchoid are simple. We state that, in the reducible case, simple conchoid components are birationally equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}$$\end{document} , and we show how special components can be used to decide whether a given algebraic curve is the conchoid of another curve.
引用
收藏
相关论文
共 50 条
  • [1] An algebraic analysis of conchoids to algebraic curves
    Sendra, J. R.
    Sendra, J.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2008, 19 (05) : 413 - 428
  • [2] Rational parametrization of conchoids to algebraic curves
    Sendra, J.
    Sendra, J. R.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2010, 21 (04) : 285 - 308
  • [3] Rational parametrization of conchoids to algebraic curves
    J. Sendra
    J. R. Sendra
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 : 285 - 308
  • [4] ALGEBRAIC CURVES
    KEMPF, GR
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 295 : 40 - 48
  • [5] Algebraic Curves
    不详
    [J]. LIBRARY JOURNAL, 1950, 75 (04) : 326 - 326
  • [6] Topology of plane algebraic curves: the algebraic approach
    Degtyarev, Alex
    [J]. TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES, 2011, 538 : 137 - 161
  • [7] On pseudopoints of algebraic curves
    Reza R. Farashahi
    Igor E. Shparlinski
    [J]. Archiv der Mathematik, 2010, 95 : 529 - 537
  • [8] ON UNIFORMIZATION OF ALGEBRAIC CURVES
    Brezhnev, Yu. V.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (02) : 233 - 271
  • [9] Algebraic potential curves
    Coolridge, JL
    [J]. ANNALS OF MATHEMATICS, 1926, 27 : 177 - 186
  • [10] ALGEBRAIC CURVES ON A TORUS
    BOTTEMA, O
    PRIMROSE, EJ
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1974, 77 (04): : 333 - 338