Generalized quasi-isometries on smooth Riemannian manifolds

被引:0
|
作者
E. S. Afanas’eva
机构
[1] National Academy of Sciences of Ukraine,Institute of Applied Mathematics and Mechanics
来源
Mathematical Notes | 2017年 / 102卷
关键词
Riemannian manifold; p-moduli; lower Q-homeomorphisms; finitely bi-Lipschitz homeomorphisms; boundary behavior;
D O I
暂无
中图分类号
学科分类号
摘要
The boundary behavior of finitely bi-Lipschitz mappings on smooth Riemannian manifolds is studied.
引用
收藏
页码:12 / 21
页数:9
相关论文
共 50 条
  • [1] Generalized quasi-isometries on smooth Riemannian manifolds
    Afanas'eva, E. S.
    [J]. MATHEMATICAL NOTES, 2017, 102 (1-2) : 12 - 21
  • [2] ROYDEN ALGEBRAS AND QUASI-ISOMETRIES OF RIEMANNIAN MANIFOLDS
    NAKAI, M
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (02) : 397 - &
  • [3] On the theory of generalized quasi-isometries
    D. A. Kovtonyuk
    V. I. Ryazanov
    [J]. Mathematical Notes, 2012, 91 : 535 - 541
  • [4] On the theory of generalized quasi-isometries
    Kovtonyuk, D. A.
    Ryazanov, V. I.
    [J]. MATHEMATICAL NOTES, 2012, 91 (3-4) : 535 - 541
  • [5] ON BOUNDARY BEHAVIOR OF GENERALIZED QUASI-ISOMETRIES
    Kovtonyuk, Denis
    Ryazanov, Vladimir
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2011, 115 : 103 - 119
  • [6] On boundary behavior of generalized quasi-isometries
    Denis Kovtonyuk
    Vladimir Ryazanov
    [J]. Journal d'Analyse Mathématique, 2011, 115 : 103 - 119
  • [7] Quasi-isometries of pairs: Surfaces in graph manifolds
    Hoang Thanh Nguyen
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 681 - 698
  • [8] On Local Properties of Spatial Generalized Quasi-isometries
    Salimov, R. R.
    Sevost'yanov, E. A.
    [J]. MATHEMATICAL NOTES, 2017, 101 (3-4) : 704 - 717
  • [9] On local properties of spatial generalized quasi-isometries
    R. R. Salimov
    E. A. Sevost’yanov
    [J]. Mathematical Notes, 2017, 101 : 704 - 717
  • [10] Quasi-isometries preserve the geometric decomposition of Haken manifolds
    Michael Kapovich
    Bernhard Leeb
    [J]. Inventiones mathematicae, 1997, 128 : 393 - 416