Utility maximization on the real line under proportional transaction costs

被引:0
|
作者
Bruno Bouchard
机构
[1] Laboratoire de Probabilités et Modèles Aléatoires,
[2] University Pierre et Marie Curie,undefined
[3] and LFA,undefined
[4] CREST,undefined
[5] 15 bd Gabriel Péri,undefined
[6] 92245 Malakoff Cedex,undefined
[7] France (e-mail: bouchard@ccr.jussieu.fr) ,undefined
来源
Finance and Stochastics | 2002年 / 6卷
关键词
Key words: Transaction costs, utility maximization, reasonable asymptotic elasticity, hedging, option pricing; JEL Classification: G11, G13; Mathematics Subject Classification (1991): 90A09, 90A10, 90A12, 60G44;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a financial market with costs as in Kabanov and Last (1999). Given a utility function defined on ${\mathbb R}$, we analyze the problem of maximizing the expected utility of the liquidation value of terminal wealth diminished by some random claim. We prove that, under the Reasonable asymptotic elasticity conditions introduced by Schachermayer (2000a), existence and duality hold in the class of targets that can be approximated by bounded from below strategies. Under some additional condition, we prove that the optimal target is indeed attainable. As an application, we obtain a dual formulation for the exponential reservation price.
引用
收藏
页码:495 / 516
页数:21
相关论文
共 50 条