Estimation of olive oil acidity using FT-IR and partial least squares regression

被引:9
|
作者
Nunes A. [1 ]
Martins J. [2 ]
Barros A.S. [1 ]
Galvis-Sánchez A.C. [1 ]
Delgadillo I. [1 ]
机构
[1] Departamento de Química, Universidade de Aveiro
[2] Foodmetric SA, Campus Santiago, 3810-193 Aveiro
关键词
Acidity; FT-IR; Olive oil; Olive quality; PLS1;
D O I
10.1007/s11694-009-9084-2
中图分类号
学科分类号
摘要
Olive oil characteristics are directly related to olive quality. Information about olive quality is of paramount importance to olive and olive oil producers, in order to establish its price. Real-time characterization of the olives avoids mixtures of high quality with low quality fruits, and allows improvement of olive oil quality. This work describes an indirect determination of olive acidity and that allows a rapid evaluation of olive oil quality. The applied method combines chemical analysis (30 min Soxhlet olive pomace extraction) in tandem with a spectroscopic technique (FT-IR) and multivariate regression (PLS1). The most suitable calibration model found used SNV pre-processing and was built with 4 Latent Variables giving a RMSECV of 8.7% and a Q 2 of 0.97. This accurate calibration model allows the estimation of olive acidity using a FT-IR spectrum of the corresponding Soxhlet oil dry extract and therefore is a suitable method for indirect determination of FFA in olives. © 2009 Springer Science+Business Media, LLC.
引用
收藏
页码:187 / 191
页数:4
相关论文
共 50 条
  • [1] Fast determination of extra-virgin olive oil acidity by voltammetry and Partial Least Squares regression
    Baldo, M. Antonietta
    Oliveri, Paolo
    Fabris, Sabrina
    Malegori, Cristina
    Daniele, Salvatore
    [J]. ANALYTICA CHIMICA ACTA, 2019, 1056 : 7 - 15
  • [2] Rapid reagentless quantification of alginate biosynthesis in Pseudomonas fluorescens bacteria mutants using FT-IR spectroscopy coupled to multivariate partial least squares regression
    Correa, Elon
    Sletta, Havard
    Ellis, David I.
    Hoel, Sunniva
    Ertesvag, Helga
    Ellingsen, Trond E.
    Valla, Svein
    Goodacre, Royston
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 403 (09) : 2591 - 2599
  • [3] Rapid reagentless quantification of alginate biosynthesis in Pseudomonas fluorescens bacteria mutants using FT-IR spectroscopy coupled to multivariate partial least squares regression
    Elon Correa
    Håvard Sletta
    David I. Ellis
    Sunniva Hoel
    Helga Ertesvåg
    Trond E. Ellingsen
    Svein Valla
    Royston Goodacre
    [J]. Analytical and Bioanalytical Chemistry, 2012, 403 : 2591 - 2599
  • [4] Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter
    Leifeld, J.
    [J]. EUROPEAN JOURNAL OF SOIL SCIENCE, 2006, 57 (06) : 846 - 857
  • [5] Use of partial least squares regression for the multivariate calibration of hazardous air pollutants in open-path FT-IR spectrometry.
    Hart, BK
    Griffiths, PR
    [J]. FOURIER TRANSFORM SPECTROSCOPY, 1998, (430): : 241 - 244
  • [6] Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression
    Borras, Eva
    Ferre, Joan
    Bogue, Ricard
    Mestres, Montserrat
    Acena, Laura
    Calvo, Angels
    Busto, Olga
    [J]. TALANTA, 2016, 155 : 116 - 123
  • [7] Detection of lard contamination in five different edible oils by FT-IR spectroscopy using a partial least squares calibration model
    Munir, Fazeelah
    Musharraf, Syed Ghulam
    Sherazi, Syed Tufail Hussain
    Malik, Muhammad Imran
    Bhanger, Muhammad Iqbal
    [J]. TURKISH JOURNAL OF CHEMISTRY, 2019, 43 (04) : 1098 - 1108
  • [8] QUANTITATIVE GAS-ANALYSIS WITH FT-IR - METHOD FOR CO CALIBRATION USING PARTIAL LEAST-SQUARES WITH LINEARIZED DATA
    BAK, J
    LARSEN, A
    [J]. APPLIED SPECTROSCOPY, 1995, 49 (04) : 437 - 443
  • [9] Oil sand screen modelling using partial least squares regression
    Sheldon, John
    Kube, Ronald
    Zhang, Hong
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 2936 - 2940
  • [10] Improving plant biomass estimation in the field using partial least squares regression and ridge regression
    Ohsowski, Brian M.
    Dunfield, Kari E.
    Klironomos, John N.
    Hart, Miranda M.
    [J]. BOTANY, 2016, 94 (07) : 501 - 508