On the Noncommutative Geometry of Twisted Spheres

被引:0
|
作者
Paolo Aschieri
Francesco Bonechi
机构
[1] Sektion Physik der Ludwig-Maximilians-Universität,INFN Sezione di Firenze and Dipartimento di Fisica
[2] Università di Firenze,undefined
来源
关键词
quantum spheres; twisted quantum groups; bicovariant differential calculus;
D O I
暂无
中图分类号
学科分类号
摘要
We describe noncommutative geometric aspects of twisted deformations, in particular of the spheres of Connes and Landi and of Connes and Dubois Violette, by using the differential and integral calculus on these spaces that is covariant under the action of their corresponding quantum symmetry groups. We start from multiparametric deformations of the orthogonal groups and related planes and spheres. We show that only in the twisted limit of these multiparametric deformations the covariant calculus on the plane gives, by a quotient procedure, a meaningful calculus on the sphere. In this calculus, the external algebra has the same dimension as the classical one. We develop the Haar functional on spheres and use it to define an integral of forms. In the twisted limit (differently from the general multiparametric case), the Haar functional is a trace and we thus obtain a cycle on the algebra. Moreover, we explicitly construct the *-Hodge operator on the space of forms on the plane and then by quotient on the sphere. We apply our results to even spheres and compute the Chern–Connes pairing between the character of this cycle, i.e. a cyclic 2n-cocycle, and the instanton projector defined in math.QA/0107070.
引用
收藏
页码:133 / 156
页数:23
相关论文
共 50 条