First-passage-time statistics of growing microbial populations carry an imprint of initial conditions

被引:0
|
作者
Jones, Eric W. [1 ]
Derrick, Joshua [2 ]
Nisbet, Roger M. [3 ]
Ludington, William B. [2 ,4 ]
Sivak, David A. [1 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[2] Carnegie Inst Sci, Dept Biol Sci & Engn, Baltimore, MD 21218 USA
[3] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA
[4] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PASTEURIZED MILK; SHELF-LIFE; GROWTH; BACTERIA; LAWS;
D O I
10.1038/s41598-023-48726-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments in E. coli and S. aureus with inoculum sizes ranging between 1 and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding that it encodes-and can be used to deduce-information about the early growth rate of a population.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] First-Passage-Time Prototypes for Precipitation Statistics
    Stechmann, Samuel N.
    Neelin, J. David
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (09) : 3269 - 3291
  • [2] The spectrum of the fractional Laplacian and First-Passage-Time statistics
    Katzav, E.
    Adda-Bedia, M.
    [J]. EPL, 2008, 83 (03)
  • [3] First-passage-time statistics for diffusion processes with an external random force
    Porra, JM
    Robinson, A
    Masoliver, J
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 3240 - 3245
  • [4] First-passage-time location function:: Application to determine first-passage-time densities in diffusion processes
    Roman, P.
    Serrano, J. J.
    Torres, F.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 4132 - 4146
  • [5] Exact results for first-passage-time statistics in biased quenched trap models
    Akimoto, Takuma
    Saito, Keiji
    [J]. PHYSICAL REVIEW E, 2019, 99 (05):
  • [6] Algorithms for Brownian first-passage-time estimation
    Adib, Artur B.
    [J]. PHYSICAL REVIEW E, 2009, 80 (03):
  • [7] First-passage-time modeling of transport in fractured rock
    Becker, MW
    [J]. SCIENTIFIC BASIS FOR NUCLEAR WASTE MANAGEMENT XIX, 1996, 412 : 723 - 730
  • [8] ON THE INVERSE FIRST-PASSAGE-TIME PROBLEM FOR A WIENER PROCESS
    Zucca, Cristina
    Sacerdote, Laura
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (04): : 1319 - 1346
  • [9] Survival probability and first-passage-time statistics of a Wiener process driven by an exponential time-dependent drift
    Urdapilleta, Eugenio
    [J]. PHYSICAL REVIEW E, 2011, 83 (02)
  • [10] On evaluations and asymptotic approximations of first-passage-time probabilities
    Sacerdote, L
    Tomassetti, F
    [J]. ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) : 270 - 284