Kolmogorov-Chaitin complexity of digital controller implementations

被引:0
|
作者
James F. Whidborne
John McKernan
Da-Wei Gu
机构
[1] Cranfield University,Department of Aerospace Sciences
[2] University of Leicester,Department of Engineering
关键词
Controller complexity; finite-precision arithmetic; finite word length; digital controller; Kolmogorov-Chaitin complexity;
D O I
10.1007/s11633-006-0314-3
中图分类号
学科分类号
摘要
The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for statespace realizations, parallel and cascade realizations, and for a newly proposed generalized implicit state-space realization. The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure. The results show that from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have lower complexity and better performance, than lower-order controllers with longer word-length.
引用
收藏
页码:314 / 322
页数:8
相关论文
共 50 条
  • [1] Kolmogorov-Chaitin Complexity of Digital Controller Implementations
    James F.Whidborne
    John McKernan
    International Journal of Automation and Computing, 2006, (03) : 314 - 322
  • [2] Kolmogorov-Chaitin Complexity of Digital Controller Implementations
    Whidborne, James F.
    McKernan, John
    Gu, Da-Wei
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2006, 3 (03) : 314 - 322
  • [3] Kolmogorov-Chaitin complexity of linear digital controllers implemented using fixed-point arithmetic
    Whidborne, JF
    Mckernan, J
    Gu, DW
    2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 1587 - 1592
  • [4] Estimation of Kolmogorov-Chaitin Complexity on Continuous Biomedical Data for Machine Learning Purposes
    Iapascurta, Victor
    INTELLIGENT AND FUZZY SYSTEMS, VOL 3, INFUS 2024, 2024, 1090 : 60 - 67
  • [5] Limit Theorems for Chaitin Complexity
    杨恩辉
    Chinese Science Bulletin, 1993, (05) : 361 - 365
  • [6] LIMIT-THEOREMS FOR CHAITIN COMPLEXITY
    YANG, EH
    CHINESE SCIENCE BULLETIN, 1993, 38 (05): : 361 - 365
  • [7] Kolmogorov complexity
    Fortnow, L
    ASPECTS OF COMPLEXITY: MINICOURSES IN ALGORITHMICS, COMPLEXITY AND COMPUTATIONAL ALGEBRA, 2001, 4 : 73 - 86
  • [8] Kolmogorov complexity
    Mosterín, J
    COMPLEXITY AND EMERGENCE, 2002, : 45 - 56
  • [9] A Resonant Controller with Robust Features for Digital Implementations at Low Sampling Frequency
    Karimi-Ghartemani, Masoud
    Khajehoddin, Sayed Ali
    Mojiri, Mohsen
    Jain, Praveen
    Bakhshai, Alireza
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 5910 - 5915
  • [10] Kolmogorov-Loveland Stochasticity and Kolmogorov Complexity
    Bienvenu, Laurent
    THEORY OF COMPUTING SYSTEMS, 2010, 46 (03) : 598 - 617