Impermeability Through a Perforated Domain for the Incompressible two dimensional Euler Equations

被引:0
|
作者
Christophe Lacave
Nader Masmoudi
机构
[1] Univ Paris Diderot,CNRS
[2] Sorbonne Paris Cité,undefined
[3] Institut de Mathématiques de Jussieu-Paris Rive Gauche,undefined
[4] UMR 7586,undefined
[5] CNRS,undefined
[6] Sorbonne Universités,undefined
[7] Université Grenoble Alpes,undefined
[8] Courant Institute,undefined
关键词
Porous Medium; Vorticity; Euler Equation; Cutoff Function; Exterior Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} separated by distances dε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_{\varepsilon}}$$\end{document} and the fluid fills the exterior. If the inclusions are distributed on the unit square, the asymptotic behavior depends on the limit of dεε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}\varepsilon}$$\end{document} when ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} goes to zero. If dεε→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}\varepsilon \to \infty}$$\end{document}, then the limit motion is not perturbed by the porous medium, namely, we recover the Euler solution in the whole space. If, on the contrary, dεε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}\varepsilon \to 0}$$\end{document}, then the fluid cannot penetrate the porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable square. If the inclusions are distributed on the unit segment then the behavior depends on the geometry of the inclusion: it is determined by the limit of dεε2+1γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}}}$$\end{document} where γ∈(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma \in (0,\infty]}$$\end{document} is related to the geometry of the lateral boundaries of the obstacles. If dεε2+1γ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}} \to \infty}$$\end{document}, then the presence of holes is not felt at the limit, whereas an impermeable wall appears if this limit is zero. Therefore, for a distribution in one direction, the critical distance depends on the shape of the inclusions; in particular, it is equal to ε3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon^{3}}$$\end{document} for balls.
引用
收藏
页码:1117 / 1160
页数:43
相关论文
共 50 条
  • [1] Impermeability Through a Perforated Domain for the Incompressible two dimensional Euler Equations
    Lacave, Christophe
    Masmoudi, Nader
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) : 1117 - 1160
  • [2] Permeability through a perforated domain for the incompressible 2D Euler equations
    Bonnaillie-Noel, V.
    Lacave, C.
    Masmoudi, N.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 159 - 182
  • [3] Stochastic Incompressible Euler Equations in a Two-dimensional Domain
    Bessaih, Hakima
    Stochastic Analysis: A Series of Lectures, 2015, 68 : 135 - 155
  • [4] On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain
    Coron, JM
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) : 1874 - 1896
  • [5] A HOMOGENIZED LIMIT FOR THE 2-DIMENSIONAL EULER EQUATIONS IN A PERFORATED DOMAIN
    Hillairet, Matthieu
    Lacave, Christophe
    Wu, Di
    ANALYSIS & PDE, 2022, 15 (05): : 1131 - 1167
  • [6] Trochoidal Solutions to the Incompressible Two-Dimensional Euler Equations
    Constantin, Adrian
    Strauss, Walter A.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 181 - 201
  • [7] Trochoidal Solutions to the Incompressible Two-Dimensional Euler Equations
    Adrian Constantin
    Walter A. Strauss
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 181 - 201
  • [8] Domain Decomposition Methods for Two Dimensional Euler Equations
    Indian Institute of Technology, Bombay
    1996,
  • [9] Two-dimensional Euler equations in an exterior domain
    Cheng, H
    Ling, H
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (3-4) : 335 - 350
  • [10] A Characteristic Mapping method for the two-dimensional incompressible Euler equations
    Yin, Xi-Yuan
    Mercier, Olivier
    Yadav, Badal
    Schneider, Kai
    Nave, Jean-Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 424