Gabor windows supported on [ − 1, 1] and dual windows with small support

被引:0
|
作者
Ole Christensen
Hong Oh Kim
Rae Young Kim
机构
[1] Technical University of Denmark,Department of Mathematics
[2] KAIST,Department of Mathematical Sciences
[3] Yeungnam University,Department of Mathematics
来源
关键词
Gabor frame; Compactly supported window; Compactly supported dual window; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a continuous function g ∈ L2(ℝ) that is supported on [ − 1, 1] and generates a Gabor frame with translation parameter 1 and modulation parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<b< \frac{2N}{2N+1}$\end{document} for some N ∈ ℕ. Under an extra condition on the zeroset of the window g we show that there exists a continuous dual window supported on [ − N, N]. We also show that this result is optimal: indeed, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b>\frac{2N}{2N+1}$\end{document} then a dual window supported on [ − N, N] does not exist. In the limit case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b=\frac{2N}{2N+1}$\end{document} a dual window supported on [ − N, N] might exist, but cannot be continuous.
引用
收藏
页码:525 / 545
页数:20
相关论文
共 50 条
  • [1] Gabor windows supported on [ -aEuroparts per thousand1, 1] and dual windows with small support
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (04) : 525 - 545
  • [2] Gabor windows supported on [-1,1] and compactly supported dual windows
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (01) : 89 - 103
  • [3] On the smoothness of dual windows for Gabor windows supported on [-1,1]
    Lemvig, Jakob
    Nielsen, Kamilla H.
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [4] Gabor windows supported on [-1,1] and construction of compactly supported dual windows with optimal smoothness
    Lemvig, Jakob
    Nielsen, Kamilla Haahr
    JOURNAL OF APPROXIMATION THEORY, 2020, 249
  • [5] On compactly supported dual windows of Gabor frames
    Stoeva, Diana T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [6] Regularity of Dual Gabor Windows
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [7] Gabor dual spline windows
    Laugesen, R. S.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (02) : 180 - 194
  • [8] A unified approach to dual Gabor windows
    Werther, Tobias
    Matusiak, Ewa
    Eldar, Yonina C.
    Subbana, Nagesh K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (05) : 1758 - 1768
  • [9] CONSTRUCTION OF SMOOTH COMPACTLY SUPPORTED WINDOWS GENERATING DUAL PAIRS OF GABOR FRAMES
    Christiansen, Lasse Hjuler
    Christensen, Ole
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (01)
  • [10] Gabor frames with trigonometric spline dual windows
    Kim, Inrni
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)