Deep discriminative dictionary pair learning for image classification

被引:0
|
作者
Wenjie Zhu
Bo Peng
Chunchun Chen
Hao Chen
机构
[1] China Jiliang University,Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering
[2] The University of Queensland,College of Sciences
[3] China Jiliang University,undefined
来源
Applied Intelligence | 2023年 / 53卷
关键词
Dictionary learning; Deep autoencoder; Projective dictionary; Dictionary pair learning; Image classification;
D O I
暂无
中图分类号
学科分类号
摘要
Discriminative dictionary learning has been extensively used for pattern classification tasks. By incorporating different kinds of label information into the dictionary learning framework, a dictionary can be attained that represents the original signal with discriminative reconstruction. The previous works learn the dictionary in the original space which limits the dictionary learning performance. In this paper, we propose an approach, namely Deep Discriminative Dictionary Pair Learning (D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}PL) for image classification. The input of D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}PL is not the matrix collected by original gray images or hand-crafted features but the relatively deeper features derived from autoencoders. Then, a structured dictionary is designed based on the discriminative contributions across different classes to reconstruct the deep feature. In addition, the associated structured projective dictionary is learned as well to guarantee the decoders updating towards the minimal error of deconvolution operator. By leveraging the discriminative-dictionary-learning-based loss function and the autoencoder loss function, D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}PL can simultaneously learn the deep potential feature and the corresponding dictionary pair. In the testing phase of D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}PL, the minimum error between the deep feature and the structured projective component with regard to different classes can directly indicate the label by a basic matrix multiplication operation. Experimental results on challenging Extended Yale B, AR, UMIST, COIL20, Scene 15, and Caltech101 datasets demonstrate that the proposed D3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}PL outperforms the prominent dictionary learning methods.
引用
收藏
页码:22017 / 22030
页数:13
相关论文
共 50 条
  • [1] Deep discriminative dictionary pair learning for image classification
    Zhu, Wenjie
    Peng, Bo
    Chen, Chunchun
    Chen, Hao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (19) : 22017 - 22030
  • [2] Image Classification Based on Discriminative Dictionary Pair Learning
    Yuan, Shuai
    Zheng, Huicheng
    Lin, Dajun
    [J]. BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 : 176 - 185
  • [3] Deep Dictionary Pair Learning for SAR Image Classification
    Wei, Kang
    Dong, Jiwen
    Hu, Wei
    Niu, Sijie
    Zhao, Hui
    Gao, Xizhan
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 : 87 - 100
  • [4] Discriminative Robust Deep Dictionary Learning for Hyperspectral Image Classification
    Singhal, Vanika
    Aggarwal, Hemant K.
    Tariyal, Snigdha
    Majumdar, Angshul
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 5274 - 5283
  • [5] Structural Constraint and Discriminative Constraint Based Dictionary Pair Learning for Image Classification
    Yang, Jinghua
    Wang, Shuangxi
    Su, Shuzhi
    Li, Huazhong
    [J]. IEEE ACCESS, 2020, 8 : 184414 - 184425
  • [6] Discriminative Structured Dictionary Learning for Image Classification
    王萍
    兰俊花
    臧玉卫
    宋占杰
    [J]. Transactions of Tianjin University., 2016, 22 (02) - 163
  • [7] Learning a Discriminative Dictionary with CNN for Image Classification
    Yu, Shuai
    Zhang, Tao
    Ma, Chao
    Zhou, Lei
    Yang, Jie
    He, Xiangjian
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 185 - 194
  • [8] Discriminative Structured Dictionary Learning for Image Classification
    王萍
    兰俊花
    臧玉卫
    宋占杰
    [J]. Transactions of Tianjin University, 2016, (02) : 158 - 163
  • [9] Discriminative structured dictionary learning for image classification
    Wang P.
    Lan J.
    Zang Y.
    Song Z.
    [J]. Transactions of Tianjin University, 2016, 22 (2) : 158 - 163
  • [10] Discriminative Dictionary Pair Learning With Scale-Constrained Structured Representation for Image Classification
    Chen, Zhe
    Wu, Xiao-Jun
    Xu, Tianyang
    Kittler, Josef
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 10225 - 10239