Exact Analysis of a One-Dimensional Weakly Repulsive Bose-Fermi Mixture

被引:0
|
作者
T. Kaminaka
J. Sato
T. Nikuni
机构
[1] Tokyo University of Science,Department of Physics, Faculty of Science
[2] Ochanomizu University,Department of Physics, Graduate School of Humanities and Sciences
来源
关键词
One-dimensional integrable system; Quantum gas; Bose–Fermi mixture; Bethe ansatz method;
D O I
暂无
中图分类号
学科分类号
摘要
We study a one-dimensional system of Bose–Fermi mixture with repulsive δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-function interactions using the nested Bethe ansatz method. This system is integrable when the masses of bonsons and fermions are equal and the interactions between Bose–Bose and Bose–Fermi particles are equal. By use of the power series expansion method, the Surtherland integral equation, which describes the ground state properties, is solved analytically in the weak coupling regime. Physical quantities such as the ground state energy, the sound velocity, and the chemical potential are explicitly expressed in terms of a dimensionless interaction parameter γ=c/D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =c/D$$\end{document} and boson fraction α=Nb/N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =N_{b}/N$$\end{document}, where c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is the interaction strength, D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is the number density, Nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{b}$$\end{document} is the number of bosons, and N is the total number of particles.
引用
收藏
页码:287 / 294
页数:7
相关论文
共 50 条
  • [1] Exact Analysis of a One-Dimensional Weakly Repulsive Bose-Fermi Mixture
    Kaminaka, T.
    Sato, J.
    Nikuni, T.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2014, 175 (1-2) : 287 - 294
  • [2] Dynamical fermionization in a one-dimensional Bose-Fermi mixture
    Patu, Ovidiu, I
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [3] Quantum criticality of a one-dimensional Bose-Fermi mixture
    Yin, Xiangguo
    Guan, Xi-Wen
    Zhang, Yunbo
    Chen, Shu
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [4] Quasiparticle decay in a one-dimensional Bose-Fermi mixture
    Reichert, Benjamin
    Petkovic, Aleksandra
    Ristivojevic, Zoran
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [5] Exactly solvable case of a one-dimensional Bose-Fermi mixture
    Imambekov, A
    Demler, E
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [6] Topological properties of one-dimensional hardcore Bose-Fermi mixture
    贾永飞
    郭怀明
    秦吉红
    陈子瑜
    冯世平
    Chinese Physics B, 2013, 22 (09) : 262 - 266
  • [7] Topological properties of one-dimensional hardcore Bose-Fermi mixture
    Jia Yong-Fei
    Guo Huai-Ming
    Qin Ji-Hong
    Chen Zi-Yu
    Feng Shi-Ping
    CHINESE PHYSICS B, 2013, 22 (09)
  • [8] Momentum reconstruction and contact of the one-dimensional Bose-Fermi mixture
    Patu, Ovidiu, I
    Kluemper, Andreas
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [9] Disordered One-Dimensional Bose-Fermi Mixtures: The Bose-Fermi Glass
    Crepin, Francois
    Zarand, Gergely
    Simon, Pascal
    PHYSICAL REVIEW LETTERS, 2010, 105 (11)
  • [10] Composite pairing and superfluidity in a one-dimensional resonant Bose-Fermi mixture
    Akhanjee, Shimul
    Tsuchiizu, Masahisa
    Furusaki, Akira
    PHYSICAL REVIEW A, 2013, 88 (04):