Metrical Service Systems with Multiple Servers

被引:0
|
作者
Ashish Chiplunkar
Sundar Vishwanathan
机构
[1] Indian Institute of Technology Bombay,
来源
Algorithmica | 2015年 / 71卷
关键词
-server; Metrical service system; Online; Approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of metrical service systems with multiple servers ((k,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,l)$$\end{document}-MSSMS), proposed by Feuerstein (LATIN’98: Theoretical Informatics, Third Latin American Symposium, 1998), is to service requests, each of which is an l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document}-point subset of a metric space, using k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} servers in an online manner, minimizing the distance traveled by the servers. We prove that Feuerstein’s deterministic algorithm for (k,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,l)$$\end{document}-MSSMS actually achieves an improved competitive ratio of kk+ll-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\left( {{k+l}\atopwithdelims (){l}}-1\right) $$\end{document} on uniform metrics. In the randomized online setting on uniform metrics, we give an algorithm which achieves a competitive ratio O(k3logl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^3\log l)$$\end{document}, beating the deterministic lower bound of k+ll-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{k+l}\atopwithdelims (){l}}-1$$\end{document}. We prove that any randomized algorithm for (k,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,l)$$\end{document}-MSSMS on uniform metrics must be Ω(logkl)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\log kl)$$\end{document}-competitive. For the offline (k,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,l)$$\end{document}-MSSMS, we give a factor l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document} pseudo-approximation algorithm using kl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kl$$\end{document} servers on any metric space, and prove a matching hardness result, that a pseudo-approximation using less than kl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kl$$\end{document} servers is unlikely, even on uniform metrics.
引用
收藏
页码:219 / 231
页数:12
相关论文
共 50 条
  • [1] Metrical Service Systems with Multiple Servers
    Chiplunkar, Ashish
    Vishwanathan, Sundar
    [J]. ALGORITHMICA, 2015, 71 (01) : 219 - 231
  • [2] Managing Customer Arrivals in Service Systems with Multiple Identical Servers
    Zacharias, Christos
    Pinedo, Michael
    [J]. M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2017, 19 (04) : 639 - 656
  • [3] Uniform service systems with k servers
    Feuerstein, E
    [J]. LATIN '98: THEORETICAL INFORMATICS, 1998, 1380 : 23 - 32
  • [4] Batch service systems with heterogeneous servers
    van Ommeren, Jan-Kees
    Baer, Niek
    Mishra, Nishant
    Roy, Debjit
    [J]. QUEUEING SYSTEMS, 2020, 95 (3-4) : 251 - 269
  • [5] Batch service systems with heterogeneous servers
    Jan-Kees van Ommeren
    Niek Baer
    Nishant Mishra
    Debjit Roy
    [J]. Queueing Systems, 2020, 95 : 251 - 269
  • [6] Adaptive Resource Allocation of Multiple Servers for Service-based Systems in Cloud Computing
    Gong, Siqian
    Yin, Beibei
    Zhu, Wenlong
    Cai, Kai-Yuan
    [J]. 2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2, 2017, : 603 - 608
  • [7] POLLING SYSTEMS WITH MULTIPLE COUPLED SERVERS
    BORST, SC
    [J]. QUEUEING SYSTEMS, 1995, 20 (3-4) : 369 - 393
  • [8] An approximate hypercube model for public service systems with co-located servers and multiple response
    Ansari, Sardar
    Yoon, Soovin
    Albert, Laura A.
    [J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2017, 103 : 143 - 157
  • [9] Analysis of a Queue with General Service Demands and Multiple Servers with Variable Service Capacities
    De Muynck, Michiel
    Bruneel, Herwig
    Wittevrongel, Sabine
    [J]. MATHEMATICS, 2023, 11 (04)
  • [10] Appointment-driven service systems with many servers
    Junfei Huang
    Avishai Mandelbaum
    Petar Momčilović
    [J]. Queueing Systems, 2022, 100 : 529 - 531