A new recursive formulation of the Tau method for solving linear Abel–Volterra integral equations and its application to fractional differential equations

被引:0
|
作者
Y. Talaei
S. Shahmorad
P. Mokhtary
机构
[1] University of Tabriz,Department of Applied Mathematics, Faculty of Mathematical Science
[2] Sahand University of Technology,Department of Mathematics, Faculty of Basic Sciences
来源
Calcolo | 2019年 / 56卷
关键词
Abel–Volterra integral equations; Convergence analysis; Müntz polynomials; Recursive Tau method; 45D05; 78M22; 45E10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the recursive approach of the Tau method is developed for numerical solution of Abel–Volterra type integral equations. Due to the singular behavior of solutions of these equations, the existing spectral approaches suffer from low accuracy. To overcome this drawback we use Müntz–Legendre polynomials as basis functions which have remarkable approximation to functions with singular behavior at origin and express Tau approximation of the exact solution based on a sequence of basis canonical polynomials that is generated by a simple recursive formula. We also provide a convergence analysis for the proposed method and obtain an exponential rate of convergence regardless of singularity behavior of the exact solution. Some examples are given to demonstrate the effectiveness of the proposed method. The results are compared with those obtained by existing numerical methods, thereby confirming the superiority of our scheme. The paper is closed by providing application of this method to approximate solution of a linear fractional integro-differential equation.
引用
收藏
相关论文
共 50 条