The Pontryagin Maximum Principle in the Wasserstein Space

被引:0
|
作者
Benoît Bonnet
Francesco Rossi
机构
[1] Aix-Marseille Université,Dipartimento di Matematica “Tullio Levi
[2] CNRS,Civita”
[3] ENSAM,undefined
[4] Université de Toulon,undefined
[5] LIS,undefined
[6] Università degli Studi di Padova,undefined
关键词
49K20; 49K27; 58E25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Pontryagin Maximum Principle for optimal control problems in the space of probability measures, where the dynamics is given by a transport equation with non-local velocity. We formulate this first-order optimality condition using the formalism of subdifferential calculus in Wasserstein spaces. We show that the geometric approach based on needle variations and on the evolution of the covector (here replaced by the evolution of a mesure on the dual space) can be translated into this formalism.
引用
收藏
相关论文
共 50 条