A generalized Hölder-type inequalities for measurable operators

被引:0
|
作者
Yazhou Han
Jingjing Shao
机构
[1] Xinjiang University,College of Mathematics and Systems Science
[2] Ludong University,School of Mathematics and Statistics Sciences
关键词
Measurable operator; Von Neumann algebra; Symmetric space; Hölder inequality; 46L51; 46L52;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a generalized Hölder-type inequality for measurable operators associated with a semi-finite von Neumann algebra which is a generalization of the result shown by Bekjan (Positivity 21:113–126, 2017). This also provides a generalization of the unitarily invariant norm inequalities for matrix due to Bhatia–Kittaneh, Horn–Mathisa, Horn–Zhan and Zou under a cohyponormal condition.
引用
收藏
相关论文
共 50 条
  • [1] Hölder-Type Inequalities for Power Series of Operators in Hilbert Spaces
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    AXIOMS, 2024, 13 (03)
  • [2] On some Hölder-type inequalities with applications
    Mustapha Raïssouli
    Rabie Zine
    Journal of Inequalities and Applications, 2015
  • [3] On Non-additive Probabilistic Inequalities of Hölder-type
    Hamzeh Agahi
    Esfandiar Eslami
    Adel Mohammadpour
    S. Mansour Vaezpour
    Mohammad Ali Yaghoobi
    Results in Mathematics, 2012, 61 : 179 - 194
  • [4] Hölder-type inequalities involving unitarily invariant norms
    Hussien Albadawi
    Positivity, 2012, 16 : 255 - 270
  • [5] Triple Diamond-Alpha integral and Hölder-type inequalities
    Jing-Feng Tian
    Journal of Inequalities and Applications, 2018
  • [6] Some improvements of McShane and Hölder-type inequalities via superquadratic functions
    Rani, Shumaila
    Bibi, Rabia
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [7] Improvement of an extension of a Hölder-type inequalityУлучшенное обобщение одного неравенства типа Гёльдера
    Josip Pečarić
    Ksenija Smoljak
    Analysis Mathematica, 2012, 38 (2) : 135 - 146
  • [8] A generalized Holder-type inequalities for measurable operators
    Han, Yazhou
    Shao, Jingjing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [9] NEW REVERSE HO<spacing diaeresis>LDER-TYPE INEQUALITIES AND APPLICATIONS
    Moyado, Jorge A. Paz
    Quintana, Yamilet
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (04): : 1021 - 1038
  • [10] A Hölder-type inequality for the Hausdorff distance between Lagrangians
    Chasse, Jean-Philippe
    Leclercq, Remi
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2025, 27 (02)