Notes on Super Projective Modules

被引:0
|
作者
Archana S. Morye
Aditya Sarma Phukon
V. Devichandrika
机构
[1] University of Hyderabad,School of Mathematics and Statistics
[2] University of Wisconsin-Madison,Department of Mathematics
关键词
Free supermodules; Super projective modules; Superspace; Primary: 17A70; Secondary: 16D40; 16W50; 17C70; 16W55;
D O I
暂无
中图分类号
学科分类号
摘要
Projective modules are a link between geometry and algebra as established by the theorem of Serre-Swan. In this paper, we define the super analog of projective modules and explore this link in the case of some particular super geometric objects. We consider the tangent bundle over the supersphere and show that the module of vector field over a supersphere is a super projective module over the ring of supersmooth functions. Also, we discuss a class of super projective modules that can be constructed from a projection map on modules defined over the ring of supersmooth functions over superspheres.
引用
收藏
页码:1226 / 1238
页数:12
相关论文
共 50 条
  • [1] Notes on Super Projective Modules
    Morye, Archana S.
    Phukon, Aditya Sarma
    Devichandrika, V
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 1226 - 1238
  • [2] Super Finitely Presented Modules and Gorenstein Projective Modules
    Wang, Fanggui
    Qiao, Lei
    Kim, Hwankoo
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (09) : 4056 - 4072
  • [3] Notes on FP-projective modules and FP-injective modules
    Mao, LX
    Ding, NQ
    [J]. Advances in Ring Theory, Proceedings, 2005, : 151 - 166
  • [4] Almost projective modules and generalized projective modules
    Kikumasa, Isao
    Kuratomi, Yosuke
    Shibata, Yoshiharu
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (10) : 4494 - 4509
  • [5] The Rings in Which All Super Finitely Presented Modules are Gorenstein Projective
    Xing, Shiqi
    Wang, Fanggui
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 965 - 977
  • [6] The Rings in Which All Super Finitely Presented Modules are Gorenstein Projective
    Shiqi Xing
    Fanggui Wang
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 965 - 977
  • [7] τ-PROJECTIVE AND STRONGLY τ-PROJECTIVE MODULES
    Amin, Ismail
    Ibrahim, Yasser
    Yousif, Mohamed
    [J]. CONTEMPORARY RING THEORY 2011, 2012, : 209 - 235
  • [8] PROJECTIVE MODULES
    KAPLANSKY, I
    [J]. ANNALS OF MATHEMATICS, 1958, 68 (02) : 372 - 377
  • [9] PROJECTIVE MODULES
    VALETTE, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (16): : 821 - 823
  • [10] PROJECTIVE MODULES AS A SUM OF PROJECTIVE IDEALS
    GERAMITA, AV
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 807 - &