Restricted Weak Upper Semi-continuity of Subdifferentials of Convex Functions on Banach Spaces

被引:0
|
作者
Xi Yin Zheng
Kung Fu Ng
机构
[1] Yunnan University,Department of Mathematics
[2] The Chinese University of Hong Kong,Department of Mathematics
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Convex function; Subdifferential; Fréchet differentiability; Asplund space; 46B10; 49J50;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and f a continuous convex function on X. Suppose that for each x ∈ X and each weak neighborhood V of zero in X* there exists δ > 0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial f(y)\subset\partial f(x)+V\;\;{\rm for\;all}\;y\in X\;{\rm with}\;\|y-x\|<\delta. $$\end{document}Then every continuous convex function g with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g \leqslant f$\end{document} on X is generically Fréchet differentiable. If, in addition, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lim\limits_{\|x\|\rightarrow\infty}f(x)=\infty$\end{document}, then X is an Asplund space.
引用
收藏
页码:245 / 255
页数:10
相关论文
共 50 条