External estimation of a segment function by a polynomial strip

被引:0
|
作者
I. Yu. Vygodchikova
S. I. Dudov
E. V. Sorin
机构
[1] Saratov State University,
关键词
estimation of a segment function; polynomial strip; subdifferential; alternance; snake problem;
D O I
暂无
中图分类号
学科分类号
摘要
The problem is considered of constructing a least-width strip with a polynomial axis that contains the graph of a given continuous segment function. Convex analysis methods are used to obtain a criterion for solving the problem in a form comparable to the Chebyshev alternance. Sufficient conditions for the uniqueness of a solution are given, including those taking into account the differential properties of the segment function to be estimated.
引用
收藏
页码:1119 / 1127
页数:8
相关论文
共 50 条
  • [1] External estimation of a segment function by a polynomial strip
    Vygodchikova, I. Yu.
    Dudov, S. I.
    Sorin, E. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (07) : 1119 - 1127
  • [2] Uniform estimation of a segment function by a polynomial strip of fixed width
    S. I. Dudov
    E. V. Sorina
    Computational Mathematics and Mathematical Physics, 2011, 51 : 1864 - 1877
  • [3] Uniform estimation of a segment function by a polynomial strip of fixed width
    Dudov, S. I.
    Sorina, E. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (11) : 1864 - 1877
  • [4] UNIFORM ESTIMATE FOR A SEGMENT FUNCTION IN TERMS OF A POLYNOMIAL STRIP
    Dudov, S. I.
    Sorina, E. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (05) : 723 - 742
  • [5] THE POLYNOMIAL STRESS FUNCTION SOLUTION FOR THE RECTANGULAR STRIP BENDING
    袁镒吾
    Applied Mathematics and Mechanics(English Edition), 1992, (12) : 1133 - 1142
  • [6] Piecewise Polynomial Estimation of a Regression Function
    Sauve, Marie
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 597 - 613
  • [7] Model parameter estimation for mixture density polynomial segment models
    Fukada, T
    Paliwal, KK
    Sagisaka, Y
    COMPUTER SPEECH AND LANGUAGE, 1998, 12 (03): : 229 - 246
  • [8] Model parameter estimation for mixture density polynomial segment models
    Fukada, T
    Sagisaka, Y
    Paliwal, KK
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 1403 - 1406
  • [9] CHEBYSHEV POLYNOMIAL APPROXIMATIONS AND CHARACTERISTIC FUNCTION ESTIMATION
    MADAN, DB
    SENETA, E
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1987, 49 (02): : 163 - 169
  • [10] Local polynomial variance-function estimation
    Ruppert, D
    Wand, MP
    Holst, U
    Hossjer, O
    TECHNOMETRICS, 1997, 39 (03) : 262 - 273