Wavelet Frame Based Image Restoration via Combined Sparsity and Nonlocal Prior of Coefficients

被引:0
|
作者
Dai-Qiang Chen
Yan Zhou
机构
[1] Third Military Medical University,Department of Mathematics
[2] Chongqing University,School of Automation
来源
关键词
Wavelet frame; Image restoration; Nonlocal weight ; regularization; Narrow-band technique;
D O I
暂无
中图分类号
学科分类号
摘要
Owing to the good ability of sparsely approximating piece-wise smooth functions like images, the (tight) wavelet frame has been widely investigated and applied for image restoration and other image processing problems over the past few years. Most of the variational models based on wavelet frame proposed in the past utilize the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} norm of frame coefficients as a sparsity prior. Very recently, the variational model which penalizes the l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{0}$$\end{document} “norm” of frame coefficients was proposed for image restoration, and proved to outperform the commonly used l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} minimization methods in the quality of restored images. Though the l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{0}$$\end{document} “norm” has the ability of preserving sharp edges and smooth regions, textures and small details may be mistakenly removed at the same time. Therefore, we introduce a l0-l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0-l_2$$\end{document} regularization model which contains a nonlocal prior of frame coefficients to avoid this issue in this paper. Meanwhile, a narrow-band technique is introduced to further improve the computational efficiency of the proposed algorithm. Numerical experiments demonstrate that the propose algorithm is superior to the recently proposed algorithm for l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{0}$$\end{document} “norm” minimization in both iterative time and recovery quality.
引用
收藏
页码:196 / 224
页数:28
相关论文
共 50 条
  • [1] Wavelet Frame Based Image Restoration via Combined Sparsity and Nonlocal Prior of Coefficients
    Chen, Dai-Qiang
    Zhou, Yan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (01) : 196 - 224
  • [2] Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients
    Liangtian He
    Yilun Wang
    Zhaoyin Xiang
    [J]. The Visual Computer, 2019, 35 : 151 - 174
  • [3] Wavelet frame-based image restoration using sparsity, nonlocal, and support prior of frame coefficients
    He, Liangtian
    Wang, Yilun
    Xiang, Zhaoyin
    [J]. VISUAL COMPUTER, 2019, 35 (02): : 151 - 174
  • [4] Image restoration by minimizing zero norm of wavelet frame coefficients
    Bao, Chenglong
    Dong, Bin
    Hou, Likun
    Shen, Zuowei
    Zhang, Xiaoqun
    Zhang, Xue
    [J]. INVERSE PROBLEMS, 2016, 32 (11)
  • [5] Nonlocal Gradient Sparsity Regularization for Image Restoration
    Liu, Hangfan
    Xiong, Ruiqin
    Zhang, Xinfeng
    Zhang, Yongbing
    Ma, Siwei
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (09) : 1909 - 1921
  • [6] Medical image restoration method via multiple nonlocal prior constraints
    Wu, Qidi
    Li, Yibing
    Lin, Yun
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 5 - 19
  • [7] Medical image restoration method via multiple nonlocal prior constraints
    Wu, Qidi
    Li, Yibing
    Lin, Yun
    [J]. Journal of Intelligent and Fuzzy Systems, 2020, 38 (01): : 5 - 19
  • [8] COMBINED NON-LOCAL AND MULTI-RESOLUTION SPARSITY PRIOR IN IMAGE RESTORATION
    Aelterman, Jan
    Goossens, Bart
    Luong, Hiep
    De Vylder, Jonas
    Pizurica, Aleksandra
    Philips, Wilfried
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 3049 - 3052
  • [9] Wavelet Frame-Based Image Restoration via l2-Relaxed Truncated l0 Regularization and Nonlocal Estimation
    He, Liangtian
    Wang, Yilun
    Mei, Jin-jin
    Liu, Jun
    Wang, Chao
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1605 - 1609
  • [10] An Efficient Algorithm for a"" 0 Minimization in Wavelet Frame Based Image Restoration
    Dong, Bin
    Zhang, Yong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2013, 54 (2-3) : 350 - 368