Multipoint Formulas for Phase Recovering from Phaseless Scattering Data

被引:0
|
作者
R. G. Novikov
机构
[1] CMAP,
[2] CNRS,undefined
[3] Ecole Polytechnique,undefined
[4] Institut Polytechnique de Paris,undefined
[5] IEPT RAS,undefined
来源
关键词
Schrödinger equation; Helmholtz equation; Monochromatic scattering data; Phase recovering; Phaseless inverse scattering; 35J10; 35P25; 35R30; 81U40;
D O I
暂无
中图分类号
学科分类号
摘要
We give formulas for phase recovering from appropriate monochromatic phaseless scattering data at 2n points in dimension d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} and in dimension d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}. These formulas are recurrent and explicit and their precision is proportional to n. By this result we continue studies of Novikov (Bulletin des Sciences Mathématiques 139(8):923–936, 2015), where formulas of such a type were given for n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}.
引用
收藏
页码:1965 / 1991
页数:26
相关论文
共 50 条
  • [1] Multipoint Formulas for Phase Recovering from Phaseless Scattering Data
    Novikov, R. G.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1965 - 1991
  • [2] Formulas for phase recovering from phaseless scattering data at fixed frequency
    Novikov, R. G.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (08): : 923 - 936
  • [3] ERROR ESTIMATES FOR PHASE RECOVERING FROM PHASELESS SCATTERING DATA
    Novikov, R. G.
    Sivkin, V. N.
    [J]. EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2020, 8 (01): : 44 - 61
  • [4] Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements
    Novikov, R. G.
    Sivkin, V. N.
    [J]. INVERSE PROBLEMS, 2022, 38 (02)
  • [5] Phase retrieval in EM inverse scattering from phaseless data
    Institute of Electronics, Chinese Acad. of Sci., Beijing 100080, China
    不详
    [J]. Dianbo Kexue Xuebao, 2008, 4 (727-731):
  • [6] Phase recovery from phaseless scattering data for discrete Schrödinger operators
    Novikov, Roman
    Sharma, Basant Lal
    [J]. INVERSE PROBLEMS, 2023, 39 (12)
  • [7] Inverse scattering from phaseless data in the freespace
    ZHANG WenJi1
    2 Graduate School of Chinese Academy of Sciences
    [J]. Science China(Information Sciences), 2009, (08) : 1389 - 1398
  • [8] Inverse scattering from phaseless data in the freespace
    ZHANG WenJi LI LianLin LI Fang Institute of Electronics Chinese Academy of Sciences Beijing China Graduate School of Chinese Academy of Sciences Beijing China
    [J]. Science in China(Series F:Information Sciences), 2009, 52 (08) : 1389 - 1398
  • [9] Inverse scattering from phaseless data in the freespace
    WenJi Zhang
    LianLin Li
    Fang Li
    [J]. Science in China Series F: Information Sciences, 2009, 52 : 1389 - 1398
  • [10] Recovering scattering obstacles by multi-frequency phaseless far-field data
    Zhang, Bo
    Zhang, Haiwen
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 58 - 73