The influence of free static spherically symmetric quintessence on particle motion in the Schwarzschild-quintessence space-time has been studied by numerical calculation. In the Schwarzschild space-time, the particle motion can be determined by an effective potential. However, this potential is dependent on the quintessence’s state parameter wq. We find that when the quintessence’s state parameter wq is in the range of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$[-\frac{1}{3},0]$\end{document}, the massive particle’s motion is just like that in the Schwarzschild space-time. And when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$-1\leqslant w_{q}<-\frac{1}{3}$\end{document}, a maximum unstable circular orbit exists for every L, and no matter how small L is, the scattering state exists, which leads to the accelerating expansion of our universe. The exists of the maximum orbit can even explain why galaxies is in a ball.