Gauss–Bonnet coupling constant as a free thermodynamical variable and the associated criticality

被引:1
|
作者
Wei Xu
Hao Xu
Liu Zhao
机构
[1] Nankai University,School of Physics
来源
关键词
Black Hole; Critical Exponent; Black Hole Thermodynamic; Extended Phase Space; Large Black Hole;
D O I
暂无
中图分类号
学科分类号
摘要
The thermodynamic phase space of Gauss–Bonnet (GB) AdS black holes is extended, taking the inverse of the GB coupling constant as a new thermodynamic pressure PGB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\mathrm {GB}}$$\end{document}. We studied the critical behavior associated with PGB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\mathrm {GB}}$$\end{document} in the extended thermodynamic phase space at fixed cosmological constant and electric charge. The result shows that when the black holes are neutral, the associated critical points can only exist in five dimensional GB-AdS black holes with spherical topology, and the corresponding critical exponents are identical to those for the Van der Waals system. For charged GB-AdS black holes, it is shown that there can be only one critical point in five dimensions (for black holes with either spherical or hyperbolic topologies), which also requires the electric charge to be bounded within some appropriate range; while in d>5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>5$$\end{document} dimensions, there can be up to two different critical points at the same electric charge, and the phase transition can occur only at temperatures which are not in between the two critical values.
引用
收藏
相关论文
共 50 条
  • [1] Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality
    Xu, Wei
    Xu, Hao
    Zhao, Liu
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (07): : 1 - 13
  • [2] Cosmological constant as a free thermodynamical variable
    Makela, Jarmo
    [J]. PHYSICAL REVIEW D, 2013, 87 (10)
  • [3] Gauss-Bonnet coupling constant in classically scale-invariant gravity
    Einhorn, Martin B.
    Jones, D. R. Timothy
    [J]. PHYSICAL REVIEW D, 2015, 91 (08):
  • [4] Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant
    Ge, Xian-Hui
    Sin, Sang-Jin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):
  • [5] A note on Gauss-Bonnet black holes at criticality
    Bhamidipati, Chandrasekhar
    Yerra, Pavan Kumar
    [J]. PHYSICS LETTERS B, 2017, 772 : 800 - 807
  • [6] Criticality of central charges for Gauss–Bonnet black holes
    Cui, Hong-Ming
    Fan, Zhong-Ying
    [J]. European Physical Journal C, 2024, 84 (07):
  • [7] Inflation with Gauss-Bonnet coupling
    Yi, Zhu
    Gong, Yungui
    Sabir, Mudassar
    [J]. PHYSICAL REVIEW D, 2018, 98 (08)
  • [8] Gauss-Bonnet as Effective Cosmological Constant
    赵柳
    孟坤
    [J]. Communications in Theoretical Physics, 2012, 57 (04) : 607 - 610
  • [9] Gauss–Bonnet inflation with a constant rate of roll
    Tie-Jun Gao
    [J]. The European Physical Journal C, 2020, 80
  • [10] Gauss-Bonnet as Effective Cosmological Constant
    Zhao Liu
    Meng Kun
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 607 - 610