An Application of the Stereoscopic Self-similar-Expansion Model to the Determination of CME-Driven Shock Parameters

被引:0
|
作者
L. Volpes
V. Bothmer
机构
[1] Georg-August-Universität Göttingen,
来源
Solar Physics | 2015年 / 290卷
关键词
Coronal mass ejections; Interplanetary; Solar wind; Shock waves;
D O I
暂无
中图分类号
学科分类号
摘要
We present an application of the stereoscopic self-similar-expansion model (SSSEM) to Solar Terrestrial Relations Observatory (STEREO)/Sun–Earth Connection Coronal and Heliospheric Investigation (SECCHI) observations of the CME on 3 April 2010 and its associated shock. The aim is to verify whether CME-driven shock parameters can be inferred from the analysis of j-maps. For this purpose, we used the SSSEM to derive the CME and the shock kinematics. Arrival times and speeds, inferred assuming either propagation at constant speed or with uniform deceleration, agree well with Advanced Composition Explorer (ACE) measurements. The shock standoff distance [Δ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\Delta]$\end{document}, the density compression [ρdρu]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{u}}}]$\end{document}, and the Mach number [M]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[M]$\end{document} were calculated by combining the results obtained for the CME and shock kinematics with models for the shock location. Their values were extrapolated to L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{L}_{1}$\end{document} and compared to in-situ data. The in-situ standoff distance was obtained from ACE solar-wind measurements, and the Mach number and compression ratio were provided by the interplanetary shock database of the Harvard–Smithsonian Center for Astrophysics. They are ρdρu=2.84\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{u}}} =2.84$\end{document} and M=2.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M = 2.2$\end{document}. The best fit to observations was obtained when the SSSEM half-width λ=40∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda= 40^{\circ}$\end{document}, and the CME and shock propagate with uniform deceleration. In this case we found Δ=23R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta= 23~\mathrm{R}_{\odot}$\end{document}, ρdρu=2.61\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{u}}} =2.61$\end{document}, and M=2.93\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M = 2.93$\end{document}. The study shows that CME-driven shock parameters can be estimated from the analysis of time–elongation plots and can be used to predict their in-situ values.
引用
收藏
页码:3005 / 3022
页数:17
相关论文
共 7 条
  • [1] An Application of the Stereoscopic Self-similar-Expansion Model to the Determination of CME-Driven Shock Parameters
    Volpes, L.
    Bothmer, V.
    [J]. SOLAR PHYSICS, 2015, 290 (10) : 3005 - 3022
  • [2] Determining CME-Driven Shock Parameters from Remote Sensing Observations
    Volpes, L.
    Bothmer, V.
    [J]. PROCEEDINGS OF THE 5TH SCHOOL AND WORKSHOP ON SPACE PLASMA PHYSICS (SPACE PLASMA PHYSICS), 2016, 1714
  • [3] STRUCTURE, PROPAGATION, AND EXPANSION OF A CME-DRIVEN SHOCK IN THE HELIOSPHERE: A REVISIT OF THE 2012 JULY 23 EXTREME STORM
    Liu, Ying D.
    Hu, Huidong
    Zhu, Bei
    Luhmann, Janet G.
    Vourlidas, Angelos
    [J]. ASTROPHYSICAL JOURNAL, 2017, 834 (02):
  • [4] DETERMINATION OF THE HELIOSPHERIC RADIAL MAGNETIC FIELD FROM THE STANDOFF DISTANCE OF A CME-DRIVEN SHOCK OBSERVED BY THE STEREO SPACECRAFT
    Poomvises, Watanachak
    Gopalswamy, Nat
    Yashiro, Seiji
    Kwon, Ryun-Young
    Olmedo, Oscar
    [J]. ASTROPHYSICAL JOURNAL, 2012, 758 (02):
  • [5] Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing
    Morgan, Brandon E.
    Schilling, Oleg
    Hartland, Tucker A.
    [J]. PHYSICAL REVIEW E, 2018, 97 (01)
  • [6] Estimates of confinement time and energy gain for plasma liner driven magnetoinertial fusion using an analytic self-similar converging shock model
    Cassibry, J. T.
    Cortez, R. J.
    Hsu, S. C.
    Witherspoon, F. D.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (11) : 112707
  • [7] TOWARDS A SELF-CONSISTENT DETERMINATION OF THE MIXING PARAMETERS IN THE ANDERSON MODEL - AN APPLICATION TO THE 4F-EXCITATION SPECTRA OF YBP
    MONNIER, R
    DEGIORGI, L
    KOELLING, DD
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (25) : 2744 - 2747