Co-fermentation of waste activated sludge with food waste for short-chain fatty acids production: effect of pH at ambient temperature

被引:0
|
作者
Leiyu Feng
Yuanyuan Yan
Yinguang Chen
机构
[1] Tongji University,State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering
关键词
waste activated sludge (WAS); food waste; cofermentation; short-chain fatty acids (SCFAs); pH; synergistic effect;
D O I
暂无
中图分类号
学科分类号
摘要
Effect of pH ranging from 4.0 to 11.0 on cofermentation of waste activated sludge (WAS) with food waste for short-chain fatty acids (SCFAs) production at ambient temperature was investigated in this study. Experimental results showed that the addition of food waste significantly improved the performance of WAS fermentation system, which resulted in the increases of SCFAs production and substrate reduction. The SCFAs production at pH 6.0, 7.0, 8.0, and 9.0 and fermentation time of 4 d was respectively 5022.7, 6540.5, 8236.6, and 7911.7 mg COD·L−1, whereas in the blank tests (no pH adjustment, pH 8.0 (blank test 1), no food waste addition, pH 8.0 (blank test 2), and no WAS addition (blank test 3)) it was only 1006.9, 971.1, and 1468.5 mg COD·L−1, respectively. The composition of SCFAs at pH from 6.0 to 9.0 was also different from other conditions and propionic acid was the most prevalent SCFA, which was followed by acetic and n-butyric acids, while acetic acid was the top product under other conditions. At pH 8.0 a higher volatile suspended solids (VSS) reduction of 16.6% for the mixture of WAS and food waste than the sole WAS indicated a synergistic effect existing in fermentation system with WAS and food waste. The influence of pH on the variations of nutrient content was also studied during anaerobic fermentation of the mixture of WAS and food waste at different pH conditions. The release of NH4+-N increased with fermentation time at all pH values investigated except 4.0, 5.0 and in blank test one. The concentrations of soluble phosphorus at acidic pHs and in the blank test one were higher than those obtained at alkaline pHs. Ammonia and phosphorus need to be removed before the SCFAs-enriched fermentation liquid from WAS and food waste was used as the carbon source.
引用
收藏
页码:623 / 632
页数:9
相关论文
共 50 条
  • [1] Co-fermentation of waste activated sludge with food waste for short-chain fatty acids production: effect of pH at ambient temperature
    Feng, Leiyu
    Yan, Yuanyuan
    Chen, Yinguang
    [J]. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA, 2011, 5 (04): : 623 - 632
  • [2] Boosting short-chain fatty acids production from co-fermentation of orange peel waste and waste activated sludge: Critical role of pH on fermentation steps and microbial function traits
    Shao, Qianqi
    Fang, Shiyu
    Fang, Xinyang
    Zhang, Minghong
    Huang, Wenxuan
    Wang, Feng
    Duan, Xu
    Wu, Yang
    Luo, Jingyang
    [J]. BIORESOURCE TECHNOLOGY, 2023, 380
  • [3] Effect of lignin on short-chain fatty acids production from anaerobic fermentation of waste activated sludge
    He, Dandan
    Zheng, Shilin
    Xiao, Jun
    Ye, Yuhang
    Liu, Xuran
    Yin, Zhuo
    Wang, Dongbo
    [J]. WATER RESEARCH, 2022, 212
  • [4] Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production
    Vidal-Antich, C.
    Perez-Esteban, N.
    Astals, S.
    Peces, M.
    Mata-Alvarez, J.
    Dosta, J.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 757
  • [5] Effects of pH on the production of volatile fatty acids from citrus waste and waste activated sludge by anaerobic co-fermentation
    Sun, Hong
    Xiao, Xiang-Zhe
    Luo, Jin-Cai
    Zhang, Liang
    Lin, Peng
    Dong, Shan-Yan
    Zhu, Yi-Chun
    [J]. Zhongguo Huanjing Kexue/China Environmental Science, 2022, 42 (04): : 1762 - 1769
  • [6] Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge
    Wang, Yali
    Wang, Dongbo
    Liu, Yiwen
    Wang, Qilin
    Chen, Fei
    Yang, Qi
    Li, Xiaoming
    Zeng, Guangming
    Li, Hailong
    [J]. WATER RESEARCH, 2017, 127 : 150 - 161
  • [7] Electrochemical valorization of waste activated sludge for short-chain fatty acids production
    Jafari, Maasoomeh
    Botte, Gerardine G.
    [J]. FRONTIERS IN CHEMISTRY, 2022, 10
  • [8] Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation
    Wu, Yuqi
    Song, Kang
    [J]. BIORESOURCE TECHNOLOGY, 2019, 292
  • [9] Effect of Nonylphenol on Anaerobic Fermentation of Waste Activated Sludge for Short-chain Fatty Acids Production Based on Metagenomic Analysis
    Duan, Xu
    Feng, Leiyu
    Zhou, Qi
    Chen, Yinguang
    [J]. Tongji Daxue Xuebao/Journal of Tongji University, 2021, 49 (12): : 1710 - 1719