Geometry of the conharmonic curvature tensor of almost Hermitian manifolds

被引:0
|
作者
V. F. Kirichenko
A. R. Rustanov
A. Shikhab
机构
[1] Moscow Pedagogical State University,
来源
Mathematical Notes | 2011年 / 90卷
关键词
almost Hermitian manifold; Riemannian structure; conharmonic curvature tensor; Kähler manifold; para-Kähler manifold; Riemannian metric; nearly Kähler structure; G-structure; Riemannian curvature; Ricci tensor;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a criterion for manifolds of dimension 4 and greater to be conharmonically para-Kähler and the condition for a manifold to be conharmonically flat.
引用
收藏
相关论文
共 50 条
  • [1] Geometry of the conharmonic curvature tensor of almost Hermitian manifolds
    Kirichenko, V. F.
    Rustanov, A. R.
    Shikhab, A.
    [J]. MATHEMATICAL NOTES, 2011, 90 (1-2) : 79 - 93
  • [2] On the geometry of conharmonic curvature tensor for nearly Kähler manifolds
    Kirichenko V.F.
    Shihab A.A.
    [J]. Journal of Mathematical Sciences, 2011, 177 (5) : 675 - 683
  • [3] On the Conharmonic Curvature Tensor of Kenmotsu Manifolds
    Asghari, Nader
    Taleshian, Abolfazl
    [J]. THAI JOURNAL OF MATHEMATICS, 2014, 12 (03): : 525 - 536
  • [4] ALMOST HERMITIAN MANIFOLDS WITH VANISHING BOCHNER CURVATURE TENSOR
    Kassabov, Ognian
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (01): : 29 - 34
  • [5] Conharmonic Tensor of Certain Classes of Almost Hermitian Manifold
    Abood, Habeeb Mtashar
    Lafta, Gassan Irhaim
    [J]. ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 1 - 6
  • [6] VANISHING OF THE BOCHNER CURVATURE TENSOR OF INDEFINITE ALMOST HERMITIAN MANIFOLDS
    Kumar, Rakesh
    Nagaich, R. K.
    Jun, Jae-Bok
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (03): : 82 - 88
  • [7] Curvature of special almost Hermitian manifolds
    Cabrera, Francisco Martin
    Swann, Andrew
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 228 (01) : 165 - 184
  • [8] Certain results on the conharmonic curvature tensor of (κ, μ)-contact metric manifolds
    Divyashree, G.
    Venkatesha
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 71 - 84
  • [9] ON THE CONHARMONIC CURVATURE TENSOR OF A LOCALLY CONFORMAL ALMOST COSYMPLECTIC MANIFOLD
    Abood, Habeeb M.
    Al-Hussaini, Farah H.
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 269 - 278
  • [10] On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds
    Dwivedi, Mohit Kumar
    Kim, Jeong-Sik
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (01) : 171 - 180