Simulating evaluation and projection of the climate zones over China by CMIP5 models

被引:0
|
作者
Wen-ping He
Shan-shan Zhao
Qiong Wu
Yun-di Jiang
Shiquan Wan
机构
[1] China Meteorological Administration,National Climate Center
[2] Nanjing University of Information Sciences and Technology,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters
[3] Chinese Academy of Science,LAGEO, Institute of Atmosphere Physics
[4] Yangzhou Meteorological Bureau of Jiangsu Province,undefined
来源
Climate Dynamics | 2019年 / 52卷
关键词
Climate zone; CMIP5; Evaluation of climate model; Projection; DT10;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of climate zones classified by the number of days of the daily average temperature ≥ 10 °C (DT10) over China, the performance of the 9 CMIP5 climate models is evaluated in this paper. The results indicate that the CMCC-CMS and MPI-ESM-MR show higher skill than the other 7 models in simulating spatial pattern and its decadal change of climate zones over China. The simulation results for FGOALS-g2 and INM-CM4 both show relatively lower skill than the other 7 models. Meanwhile, the performance of multi-model ensemble in simulating climate zones over China is obviously better than the simulated result of any single model. So, it is a good way to simulate climate zones by multi-model ensemble to reduce some uncertainty of climate models. However, it is crucial to select appropriate ensemble members. Compared with 1960–2005, the climatic zones in China have an obvious trend of northward shift in 2021–2100. The range of southern sub-tropical belt expands to the most areas in the south of Yangtze River under RCP4.5 emission scenarios, and further extends to the north areas of Yangtze River with a maximum of 2–6° of latitude under RCP8.5 emission scenarios. Middle sub-tropical belt shifts gradually to the areas between Yellow River and north areas of the middle and lower reaches of the Yangtze River. Northern sub-tropical belt shifts northward to southeastern North China. Warm extra-tropical belt extends to the most of Northeast China, most of central Inner Mongolia, and northern Xinjiang under RCP8.5 emission scenarios.
引用
收藏
页码:2597 / 2612
页数:15
相关论文
共 50 条
  • [1] Simulating evaluation and projection of the climate zones over China by CMIP5 models
    He, Wen-ping
    Zhao, Shan-shan
    Wu, Qiong
    Jiang, Yun-di
    Wan, Shiquan
    [J]. CLIMATE DYNAMICS, 2019, 52 (5-6) : 2597 - 2612
  • [2] Evaluation and Projection of Extreme Precipitation over Northern China in CMIP5 Models
    Rao, Xiaoqiang
    Lu, Xi
    Dong, Wenjie
    [J]. ATMOSPHERE, 2019, 10 (11)
  • [3] Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon
    Dabang Jiang
    Dan Hu
    Zhiping Tian
    Xianmei Lang
    [J]. Advances in Atmospheric Sciences, 2020, 37 : 1102 - 1118
  • [4] Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon
    Dabang JIANG
    Dan HU
    Zhiping TIAN
    Xianmei LANG
    [J]. Advances in Atmospheric Sciences, 2020, 37 (10) : 1102 - 1134
  • [5] Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon
    Jiang, Dabang
    Hu, Dan
    Tian, Zhiping
    Lang, Xianmei
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2020, 37 (10) : 1102 - 1118
  • [6] Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau
    Su, Fengge
    Duan, Xiaolan
    Chen, Deliang
    Hao, Zhenchun
    Cuo, Lan
    [J]. JOURNAL OF CLIMATE, 2013, 26 (10) : 3187 - 3208
  • [7] Evaluation and Projection of Temperature Extremes over China Based on CMIP5 Model
    Yao Yao
    Luo Yong
    Huang Jian-Bin
    [J]. ADVANCES IN CLIMATE CHANGE RESEARCH, 2012, 3 (04) : 179 - 185
  • [8] Comparison of CMIP6 and CMIP5 models in simulating climate extremes
    Chen, Huopo
    Sun, Jianqi
    Lin, Wenqing
    Xu, Huiwen
    [J]. SCIENCE BULLETIN, 2020, 65 (17) : 1415 - 1418
  • [9] Evaluation and Projection of Temperature Extremes over China Based on CMIP5 Model
    YAO Yao
    LUO Yong
    HUANG Jian-Bin
    [J]. Advances in Climate Change Research, 2012, 3 (04) : 179 - 185
  • [10] Temperature dependent climate projection deficiencies in CMIP5 models
    Christensen, Jens H.
    Boberg, Fredrik
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2012, 39