Critical Exponents for the Decay Rate of Solutions in a Semilinear Parabolic Equation

被引:0
|
作者
Noriko Mizoguchi
Eiji Yanagida
机构
[1] Department of Mathematics,
[2] Tokyo Gakugei University,undefined
[3] Koganei,undefined
[4] Tokyo 184‐8501,undefined
[5] Japan,undefined
[6] Graduate School of Mathematical Sciences,undefined
[7] University of Tokyo,undefined
[8] Meguro‐ku,undefined
[9] Tokyo 153‐8914,undefined
[10] Japan,undefined
关键词
Decay Rate; Cauchy Problem; Parabolic Equation; Nonnegative Integer; Critical Exponent;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the Cauchy problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \begin{array}{ll} u _t = u _{xx} - |u| ^{ p-1 } u & \quad \mbox{ in } \R \times (0, \infty), \vspace{5pt} \\ \quad u (x,0) = u_0(x) & \quad \mbox{ in } \R. \end{array} \]\end{document} A solution u is said to decay fast if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t ^{1/(p-1)} u \rightarrow 0$\end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t \rightarrow \infty$\end{document} uniformly in R, and is said to decay slowly otherwise. For each nonnegative integer k, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Lambda _k$\end{document} be the set of uniformly bounded functions on R which change sign k times, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $p_k>1$\end{document} be defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ p_k=1+2/(k+1)$\end{document}. It is shown that any nontrivial bounded solution with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u_0\in\Lambda _k$\end{document} decays slowly if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $1 < p < p_k$\end{document}, whereas there exists a nontrivial fast decaying solution with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $u_0 \in\Lambda_k$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $p\gep_k$\end{document}.
引用
收藏
页码:331 / 342
页数:11
相关论文
共 50 条