Omnidirectional photonic band gap based on nonlinear periodic and quasi-periodic photonic crystals

被引:0
|
作者
Oumayma Habli
Jihene Zaghdoudi
Mounir Kanzari
机构
[1] Université Tunis El Manar,Laboratoire de Photovoltaïque et Matériaux Semi
[2] Ecole Nationale d’Ingénieurs de Tunis,conducteurs
[3] Université de Carthage,undefined
[4] Institut Supérieur de Technologies de l’Environnement de l’Urbanisme et du Bâtiment (ISTEUB),undefined
[5] Université de Tunis,undefined
[6] Institut Préparatoire aux Etudes d’Ingénieurs de Tunis-IPEIT,undefined
来源
Applied Physics B | 2022年 / 128卷
关键词
Nonlinear 1D photonic crystal; Kerr effect; Transfer matrix method; Omnidirectional PBG;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we report the effect of the nonlinearity independently of the incident angle θ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{0}$$\end{document} on the reflection properties of 1D periodic and quasi-periodic photonic crystals of type H(LH)15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{15\ }$$\end{document}and “F6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}F6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{4}$$\end{document}”, respectively. Which is composed of linear (H layers) and nonlinear (L layers) materials. The linear and nonlinear reflection spectra for both TE and TM polarizations are graphically illustrated using a numerical approach based on the Transfer Matrix Method (TMM). It is shown that the position and the width of the PBG can be controlled by the variation of the electric field intensity (Kerr effect), independently of θ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{0}$$\end{document}. Those systems exhibit an Omnidirectional Photonic Band Gap OPBG for any polarization for a common limit θ0∈0,64∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{0} \in \left[ 0,64{}^\circ \right]$$\end{document}. The most suitable system to have a larger OPBG is the system “F6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}F6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{6}$$\end{document}F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{4}$$\end{document}” using ZnSe as H layers and Poly-9BCMU as L layers. Our nonlinear models are suitable to be used as good reflectors as well in designing nonlinear optical devices as optical limiting and all-optical switching.
引用
收藏
相关论文
共 50 条
  • [1] Omnidirectional photonic band gap based on nonlinear periodic and quasi-periodic photonic crystals
    Habli, Oumayma
    Zaghdoudi, Jihene
    Kanzari, Mounir
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2022, 128 (07):
  • [2] Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals
    Arie, Ady
    Voloch, Noa
    [J]. LASER & PHOTONICS REVIEWS, 2010, 4 (03) : 355 - 373
  • [3] Omnidirectional Photonic Band Gaps Enlarged by 1D Plasma Photonic Crystals with Quasi-periodic Structures
    Feng, Xue
    Zhang, Hai-Feng
    Kong, Xiang-Kun
    Wang, Ling-Ling
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 1923 - 1927
  • [4] Nonlinear photonic quasi-periodic spiral
    Zeng, Jing
    Wang, Sen
    Zhao, Ruwei
    Liu, Yongxing
    Xu, Tiefeng
    Sheng, Yan
    Xu, Tianxiang
    [J]. CHINESE OPTICS LETTERS, 2024, 22 (03)
  • [5] Nonlinear photonic quasi-periodic spiral
    曾静
    王森
    赵如薇
    刘永兴
    徐铁峰
    盛艳
    徐天翔
    [J]. Chinese Optics Letters, 2024, 22 (03) : 117 - 122
  • [6] Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals
    Zhang, Hai-Feng
    Liu, Shao-Bin
    Kong, Xiang-Kun
    Bian, Bo-Rui
    Dai, Yi
    [J]. SOLID STATE COMMUNICATIONS, 2012, 152 (23) : 2113 - 2119
  • [7] Periodic and quasi-periodic nonlinear photonic crystals - art. no. 66041A
    Arie, Ady
    [J]. 14th International School on Quantum Electronics: Laser Physics and Applications, 2007, 6604 : A6041 - A6041
  • [8] Broad omnidirectional reflection band forming using the combination of fibonacci quasi-periodic and periodic one-dimensional photonic crystals
    Dong, JW
    Han, P
    Wang, HZ
    [J]. CHINESE PHYSICS LETTERS, 2003, 20 (11) : 1963 - 1965
  • [9] The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure
    Xue, Feng
    Liu, Shao-Bin
    Zhang, Hai-Feng
    Kong, Xiang-Kun
    Wen, Yong-Diao
    Wang, Ling-Ling
    Qian, Shen
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (01)
  • [10] The theoretical analysis of omnidirectional photonic band gaps in the one-dimensional ternary plasma photonic crystals based on Pell quasi-periodic structure
    Feng Xue
    Shao-Bin Liu
    Hai-Feng Zhang
    Xiang-Kun Kong
    Yong-Diao Wen
    Ling-Ling Wang
    Shen Qian
    [J]. Optical and Quantum Electronics, 2017, 49