Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts

被引:0
|
作者
Kanhaiya L. Pandey
A. Mangalam
机构
[1] Indian Institute of Astrophysics,
来源
关键词
Cosmology: theory; cosmology: dark ages; reionization; first stars; quasars: supermassive black holes;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, z∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\sim $$\end{document} 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document} K. We show that even under the existing abundance limits, the primordial black holes of masses ≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim $$\end{document}10-2M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}M_\odot $$\end{document}, can heat the collapsing gas to an extent that the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} formation is inhibited. The collapsing gas can maintain its temperature at 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^4$$\end{document} K till the gas reaches a critical density nc≈103cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}$$\end{document}, at which the roto-vibrational states of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} approaches local thermodynamic equilibrium and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} cooling becomes inefficient. In the absence of H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{H}_2$$\end{document} cooling, the temperature of the collapsing gas stays at ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^4$$\end{document} K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.
引用
收藏
相关论文
共 50 条
  • [1] Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts
    Pandey, Kanhaiya L.
    Mangalam, A.
    [J]. JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2018, 39 (01)
  • [2] Supermassive primordial black holes at high redshifts
    Dubrovich, V. K.
    Eroshenko, Yu N.
    Grachev, S., I
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2021, 30 (16):
  • [3] Supermassive black hole formation at high redshifts via direct collapse in a cosmological context
    Choi, Jun-Hwan
    Shlosman, Isaac
    Begelman, Mitchell C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (04) : 4411 - 4423
  • [4] SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS THROUGH A PRIMORDIAL MAGNETIC FIELD
    Sethi, Shiv
    Haiman, Zoltan
    Pandey, Kanhaiya
    [J]. ASTROPHYSICAL JOURNAL, 2010, 721 (01): : 615 - 621
  • [5] Supermassive black hole seed formation at high redshifts: long-term evolution of the direct collapse
    Shlosman, Isaac
    Choi, Jun-Hwan
    Begelman, Mitchell C.
    Nagamine, Kentaro
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (01) : 500 - 511
  • [6] SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS VIA DIRECT COLLAPSE: PHYSICAL PROCESSES IN THE EARLY STAGE
    Choi, Jun-Hwan
    Shlosman, Isaac
    Begelman, Mitchell C.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 774 (02):
  • [7] The Mass Function of Supermassive Black Holes in the Direct-collapse Scenario
    Basu, Shantanu
    Das, Arpan
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2019, 879 (01)
  • [8] A merger scenario for the formation of supermassive black holes - From supermassive stars to supermassive black holes
    Makino, J
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2004, (155): : 190 - 197
  • [9] THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS
    Tanaka, Takamitsu
    Haiman, Zoltan
    [J]. ASTROPHYSICAL JOURNAL, 2009, 696 (02): : 1798 - 1822
  • [10] Finding Lensed Direct-collapse Black Holes and Supermassive Primordial Stars
    Vikaeus, Anton
    Whalen, Daniel J.
    Zackrisson, Erik
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2022, 933 (01)