Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks

被引:0
|
作者
Kevin M. Mendez
David I. Broadhurst
Stacey N. Reinke
机构
[1] Edith Cowan University,Centre for Integrative Metabolomics & Computational Biology, School of Science
来源
Metabolomics | 2020年 / 16卷
关键词
Metabolomics; Partial least squares; Artificial neural networks; Machine learning; Jupyter; Variable importance in projection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 12 条
  • [1] Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks
    Mendez, Kevin M.
    Broadhurst, David I.
    Reinke, Stacey N.
    [J]. METABOLOMICS, 2020, 16 (02)
  • [2] Authentication of Douro DO monovarietal red wines based on anthocyanin profile: Comparison of partial least squares ? discriminant analysis, decision trees and artificial neural networks
    Cosme, Fernanda
    Milheiro, Juliana
    Pires, Joana
    Guerra-Gomes, Fernanda Isabel
    Filipe-Ribeiro, Luis
    Nunes, Fernando M.
    [J]. FOOD CONTROL, 2021, 125
  • [3] Development of models for predicting toxicity from sediment chemistry by partial least squares-discriminant analysis and counter-propagation artificial neural networks
    Alvarez-Guerra, Manuel
    Ballabio, Davide
    Amigo, Jose Manuel
    Bro, Rasmus
    Viguri, Javier R.
    [J]. ENVIRONMENTAL POLLUTION, 2010, 158 (02) : 607 - 614
  • [4] Classification of Browning on Intact Table Grape Bunches Using Near-Infrared Spectroscopy Coupled With Partial Least Squares-Discriminant Analysis and Artificial Neural Networks
    Daniels, Andries J.
    Poblete-Echeverria, Carlos
    Nieuwoudt, Helene H.
    Botha, Nicolene
    Opara, Umezuruike Linus
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [5] USING MACHINE LEARNING TO CLASSIFY IMAGE FEATURES FROM CANINE PELVIC RADIOGRAPHS: EVALUATION OF PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS AND ARTIFICIAL NEURAL NETWORK MODELS
    McEvoy, Fintan J.
    Amigo, Jose M.
    [J]. VETERINARY RADIOLOGY & ULTRASOUND, 2013, 54 (02) : 122 - 126
  • [6] Discrimination of wines based on 2D NMR spectra using learning vector quantization neural networks and partial least squares discriminant analysis
    Masoum, S
    Bouveresse, DJR
    Vercauteren, J
    Jalali-Heravi, M
    Rutledge, DN
    [J]. ANALYTICA CHIMICA ACTA, 2006, 558 (1-2) : 144 - 149
  • [7] Comparison of partial least squares-discriminant analysis, support vector machines and deep neural networks for spectrometric classification of seed vigour in a broad range of tree species
    Liu, Wenjian
    Liu, Jun
    Jiang, Jingmin
    Li, Yanjie
    [J]. JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2021, 29 (01) : 33 - 41
  • [8] Differentiation of perirenal and omental fat quality of suckling lambs according to the rearing system from Fourier transforms mid-infrared spectra using partial least squares and artificial neural networks analysis
    Osorio, M. T.
    Zumalacarregui, J. M.
    Alaiz-Rodriguez, R.
    Guzman-Martinez, R.
    Engelsen, S. B.
    Mateo, J.
    [J]. MEAT SCIENCE, 2009, 83 (01) : 140 - 147
  • [9] Simultaneous quantitative analysis of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium using surface-enhanced Raman spectroscopy coupled with partial least squares regression and artificial neural networks
    Zhao, Yuwen
    Zhang, Zeshuai
    Ning, Ying
    Miao, Peiqi
    Li, Zheng
    Wang, Haixia
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 293
  • [10] A comparison between diatom-based pH inference models using Artificial Neural Networks (ANN), Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS) regressions
    Julien M.J. Racca
    Aline Philibert
    Robert Racca
    Yves T. Prairie
    [J]. Journal of Paleolimnology, 2001, 26 : 411 - 422