Lattice Paths, Young Tableaux, and Weight Multiplicities

被引:0
|
作者
Rebecca L. Jayne
Kailash C. Misra
机构
[1] North Carolina State University,Department of Mathematics
来源
Annals of Combinatorics | 2018年 / 22卷
关键词
05E10; 17B10; 05A05; 05A17; 17B67; lattice path; Young tableau; avoiding permutation; affine Lie algebra; weight multiplicity;
D O I
暂无
中图分类号
学科分类号
摘要
For ℓ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell \geq 1}$$\end{document} and k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \geq 2}$$\end{document}, we consider certain admissible sequences of k−1 lattice paths in a colored ℓ×ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell \times \ell}$$\end{document} square. We show that the number of such admissible sequences of lattice paths is given by the sum of squares of the number of standard Young tableaux of shape λ⊢ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \vdash \ell}$$\end{document} with l(λ)≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${l(\lambda) \leq k}$$\end{document}, which is also the number of (k + 1)k··· 21-avoiding permutations in Sℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_\ell}$$\end{document}. Finally, we apply this result to the representation theory of the affine Lie algebra sl^(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{sl}(n)}$$\end{document} and show that this gives the multiplicity of certain maximal dominant weights in the irreducible highest weight sl^(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{sl}(n)}$$\end{document}-module V(kΛ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V(k \Lambda_0)}$$\end{document}.
引用
收藏
页码:147 / 156
页数:9
相关论文
共 50 条