Variational Problems with Long-Range Interaction

被引:0
|
作者
Nicola Soave
Hugo Tavares
Susanna Terracini
Alessandro Zilio
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Universidade de Lisboa,CAMGSD (Center for Mathematical Analysis, Geometry and Dynamical Systems), Departamento de Matemática, Instituto Superior Técnico
[3] Universidade de Lisboa,Departamento de Matemática, Faculdade de Ciências da
[4] Università di Torino,Dipartimento di Matematica “Giuseppe Peano”
[5] Laboratoire J.-L. Lions (CNRS UMR 7598),undefined
[6] Université Paris Diderot - Paris 7,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of variational problems for densities that repel each other at a distance. Typical examples are given by the Dirichlet functional and the Rayleigh functional D(u)=∑i=1k∫Ω|∇ui|2orR(u)=∑i=1k∫Ω|∇ui|2∫Ωui2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(\mathbf{u}) = \sum_{i=1}^k \int_{\Omega} |\nabla u_i|^2 \quad \text{or} \quad R(\mathbf{u}) = \sum_{i=1}^k \frac{\int_{\Omega} |\nabla u_i|^2}{\int_{\Omega} {u_i^2}}, \end{aligned}$$\end{document}minimized in the class of H1(Ω,Rk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^1(\Omega,\mathbb{R}^k)}$$\end{document} functions attaining some boundary conditions on ∂Ω, and subjected to the constraint dist({ui>0},{uj>0})≥1∀i≠j.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text{dist} (\{u_i > 0\}, \{u_j > 0\}) \ge 1 \quad \forall i \neq j. \end{aligned}$$\end{document}For these problems, we investigate the optimal regularity of the solutions, prove a free-boundary condition, and derive some preliminary results characterizing the free boundary ∂{∑i=1kui>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \{\sum_{i=1}^k u_i > 0\}}$$\end{document}.
引用
收藏
页码:743 / 772
页数:29
相关论文
共 50 条
  • [1] Variational Problems with Long-Range Interaction
    Soave, Nicola
    Tavares, Hugo
    Terracini, Susanna
    Zilio, Alessandro
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (03) : 743 - 772
  • [2] CONVERGENCE ACCELERATION FOR THE KOHN VARIATIONAL METHOD IN THE PRESENCE OF A LONG-RANGE INTERACTION
    FORREY, RC
    HILL, RN
    SHARMA, RD
    [J]. PHYSICAL REVIEW A, 1995, 52 (04): : 2948 - 2954
  • [3] VARIATIONAL CALCULATIONS OF LONG-RANGE FORCES
    DAVISON, WD
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 87 (555P): : 133 - &
  • [4] PROBLEMS OF LONG-RANGE FISHERIES
    KACZYNSKI, W
    [J]. OCEANUS, 1979, 22 (01) : 60 - 66
  • [5] FERMIONS WITH LONG-RANGE INTERACTION
    SCHMELTZER, D
    [J]. PHYSICAL REVIEW B, 1995, 52 (11): : 7939 - 7950
  • [6] LONG-RANGE SCALAR INTERACTION
    DICKE, RH
    [J]. PHYSICAL REVIEW, 1962, 126 (05): : 1875 - &
  • [7] Problems of long-range cadre training
    Dudnikov, SV
    Konovalov, VV
    [J]. RUSSIAN EDUCATION AND SOCIETY, 2005, 47 (05): : 79 - 89
  • [8] PROBLEMS OF LONG-RANGE COMPARISON IN PENUTIAN
    SWADESH, M
    [J]. LANGUAGE, 1956, 32 (01) : 17 - 41
  • [9] SOME PROBLEMS OF LONG-RANGE PLANNING
    SZUCS, A
    [J]. ELELMEZESI IPAR, 1980, 34 (01): : 29 - 35
  • [10] STATISTICAL PROBLEMS OF LONG-RANGE FORECASTING
    LEITH, CE
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1973, 54 (03) : 266 - 266