Inverse Resonance Problem for Jacobi Operators on a Half-Lattice

被引:0
|
作者
E. Korotyaev
E. Leonova
机构
[1] Saint-Petersburg State University,
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:320 / 344
页数:24
相关论文
共 50 条
  • [1] Inverse Resonance Problem for Jacobi Operators on a Half-Lattice
    Korotyaev, E.
    Leonova, E.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (03) : 320 - 344
  • [2] The inverse resonance problem for Jacobi operators
    Brown, BM
    Naboko, S
    Weikard, R
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 727 - 737
  • [3] Stability of the Inverse Resonance Problem for Jacobi Operators
    Bledsoe, Matthew
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (04) : 481 - 496
  • [4] Stability of the Inverse Resonance Problem for Jacobi Operators
    Matthew Bledsoe
    [J]. Integral Equations and Operator Theory, 2012, 74 : 481 - 496
  • [5] Periodic Jacobi operator with finitely supported perturbation on the half-lattice
    Iantchenko, Alexei
    Korotyaev, Evgeny
    [J]. INVERSE PROBLEMS, 2011, 27 (11)
  • [6] Inverse resonance scattering for Jacobi operators
    E. L. Korotyaev
    [J]. Russian Journal of Mathematical Physics, 2011, 18 : 427 - 439
  • [7] Inverse Resonance Scattering for Jacobi Operators
    Korotyaev, E. L.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2011, 18 (04) : 427 - 439
  • [8] Half-lattice Paths and Virasoro Characters
    Blondeau-Fournier, Olivier
    Mathieu, Pierre
    Welsh, Trevor A.
    [J]. FUNDAMENTA INFORMATICAE, 2012, 117 (1-4) : 57 - 83
  • [9] On the inverse resonance problemfor Jacobi operators—uniqueness and stability
    Marco Marletta
    S. Naboko
    R. Shterenberg
    R. Weikard
    [J]. Journal d'Analyse Mathématique, 2012, 117 : 221 - 247
  • [10] Inverse spectral problem for Jacobi operators and Miura transformation
    Osipov, Andrey
    [J]. CONCRETE OPERATORS, 2021, 8 (01): : 77 - 89