Non-equilibrium Particle Dynamics with Unbounded Number of Interacting Neighbors

被引:0
|
作者
Alexei Daletskii
Dmitri Finkelshtein
机构
[1] The University of York,Department of Mathematics
[2] Swansea University,Department of Mathematics
来源
关键词
Interacting particle systems; Row-finite systems; Scale of Banach spaces; Hamiltonian dynamics; Gradient diffusion; Self-organised systems; Ovsyannikov’s method; Dissipativity; 82C22; 34A12; 34A30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an infinite system of first order differential equations in Rν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{\nu }$$\end{document}, parameterized by elements x of a fixed countable set γ⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \subset {\mathbb {R}}^d$$\end{document}, where the right-hand side of each x-equation depends on a finite but in general unbounded number nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_x$$\end{document} of variables (a row-finite system). Such systems describe in particular (non-equilibrium) dynamics of spins qx∈Rν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_x\in {\mathbb {R}}^{\nu }$$\end{document} of a collection of particles labelled by points x∈γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \gamma $$\end{document}. Two spins qx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{x}$$\end{document} and qy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{y}$$\end{document} interact via a pair potential if the distance between x and y is no more than a fixed interaction radius. In contrast to the case where γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is a regular graph, e.g. Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document}, the number nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_x$$\end{document} of particles interacting with particle x can be unbounded in x. Our main example of a “growing” configuration γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is a typical realization of a Poisson (or Gibbs) point process. Under certain dissipativity-type condition on the right-hand side of our system and a bound on growth of nx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_x$$\end{document}, we prove the existence and (under additional assumptions) uniqueness of infinite lifetime solutions with explicit estimates of growth in parameter x and time t. For this, we obtain uniform estimates of solutions to approximating finite systems using a version of Ovsyannikov’s method for linear systems in a scale of Banach spaces. As a by-product, we develop an infinite-time generalization of the Ovsyannikov method.
引用
收藏
页码:1639 / 1659
页数:20
相关论文
共 50 条