Local isoperimetric inequalities in metric measure spaces verifying measure contraction property

被引:0
|
作者
Xian-Tao Huang
机构
[1] Sun Yat-sen University,School of Mathematics
来源
manuscripta mathematica | 2023年 / 171卷
关键词
53C23; 51Fxx;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that on an essentially non-branching MCP(K,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {MCP}(K,N)$$\end{document} space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条