On an Extremal Problem for Poset Dimension

被引:0
|
作者
Grzegorz Guśpiel
Piotr Micek
Adam Polak
机构
[1] Jagiellonian University,Theoretical Computer Science Department, Faculty of Mathematics and Computer Science
来源
Order | 2018年 / 35卷
关键词
Partially ordered sets; Poset dimension; Extremal combinatorics; Permutation matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) = n1/2. We improve the best known upper bound and show f(n) = O (n2/3). For higher dimensions, we show fd(n)=Ondd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{d}(n)=\O \left (n^{\frac {d}{d + 1}}\right )$\end{document}, where fd(n) is the largest integer such that every poset on n elements has a d-dimensional subposet on fd(n) elements.
引用
收藏
页码:489 / 493
页数:4
相关论文
共 50 条
  • [1] On an Extremal Problem for Poset Dimension
    Guspiel, Grzegorz
    Micek, Piotr
    Polak, Adam
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2018, 35 (03): : 489 - 493
  • [2] A Poset Dimension Algorithm
    Department of Statistics and OR, Complutense University, 28040- Madrid, Spain
    J Algorithms, 1 (185-208):
  • [3] On dimension of poset variety
    Fonseca, Claudia Cavalcante
    Iusenko, Kostiantyn
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 568 : 155 - 164
  • [4] BOXICITY AND POSET DIMENSION
    Adiga, Abhijin
    Bhowmick, Diptendu
    Chandran, L. Sunil
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (04) : 1687 - 1698
  • [5] Boxicity and Poset Dimension
    Adiga, Abhijin
    Bhowmick, Diptendu
    Chandran, L. Sunil
    COMPUTING AND COMBINATORICS, 2010, 6196 : 3 - 12
  • [6] A NOTE ON THE DIMENSION OF A POSET
    MILNER, EC
    POUZET, M
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1990, 7 (01): : 101 - 102
  • [7] A poset dimension algorithm
    Yáñez, J
    Montero, J
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 30 (01): : 185 - 208
  • [8] PLANAR GRAPHS AND POSET DIMENSION
    SCHNYDER, W
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1989, 5 (04): : 323 - 343
  • [9] Planarity and edge poset dimension
    deFraysseix, H
    deMendez, PO
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (08) : 731 - 740
  • [10] Dimension-2 poset competition numbers and dimension-2 poset double competition numbers
    Wu, Yaokun
    Lu, Junjie
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (06) : 706 - 717