No difference in cerebral perfusion between the wild-type and the 5XFAD mouse model of Alzheimer’s disease

被引:0
|
作者
Drew R. DeBay
Tân-Trào Phi
Chris V. Bowen
Steven C. Burrell
Sultan Darvesh
机构
[1] Dalhousie University,Department of Medical Neuroscience
[2] Dalhousie University,Department of Diagnostic Radiology
[3] IWK Health Centre,Biomedical Translational Imaging Centre (BIOTIC)
[4] Department of Medicine (Neurology and Geriatric Medicine),Department of Chemistry and Physics
[5] Mount St. Vincent University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Neuroimaging with [2,2-dimethyl-3-[(2R,3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(2R,3E)-3-hydroxyiminobutan-2-yl]azanide;oxo(99Tc)technetium-99(3+) ([99mTc]HMPAO) single photon emission computed tomography (SPECT) is used in Alzheimer’s disease (AD) to evaluate regional cerebral blood flow (rCBF). Hypoperfusion in select temporoparietal regions has been observed in human AD. However, it is unknown whether AD hypoperfusion signatures are also present in the 5XFAD mouse model. The current study was undertaken to compare baseline brain perfusion between 5XFAD and wild-type (WT) mice using [99mTc]HMPAO SPECT and determine whether hypoperfusion is recapitulated in 5XFAD mice. 5XFAD and WT mice underwent a 45 min SPECT scan, 20 min after [99mTc]HMPAO administration. Whole brain and regional standardized uptake values (SUV) and regional relative standardized uptake values (SUVR) with whole brain reference were compared between groups. Brain perfusion was similar between WT and 5XFAD brains. Whole brain [99mTc]HMPAO retention revealed no significant difference in SUV (5XFAD, 0.372 ± 0.762; WT, 0.640 ± 0.955; p = 0.536). Similarly, regional analysis revealed no significant differences in [99mTc]HMPAO metrics between groups (SUV: 0.357 ≤ p ≤ 0.640; SUVR: 0.595 ≤ p ≤ 0.936). These results suggest apparent discrepancies in rCBF between human AD and the 5XFAD model. Establishing baseline perfusion patterns in 5XFAD mice is essential to inform pre-clinical diagnostic and therapeutic drug discovery programs.
引用
收藏
相关论文
共 50 条
  • [1] No difference in cerebral perfusion between the wild-type and the 5XFAD mouse model of Alzheimer's disease
    DeBay, Drew R. R.
    Phi, Tan-Trao
    Bowen, Chris V. V.
    Burrell, Steven C. C.
    Darvesh, Sultan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model
    Padua, Mafalda Soares
    Guil-Guerrero, Jose L.
    Lopes, Paula Alexandra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [3] Retinal and thalamic alterations in the 5xFAD mouse model of Alzheimer's disease
    Mccool, Shaylah
    Smith, Jennie C.
    Sladek, Asia
    Fan, Shan
    Van Hook, Matthew J.
    PLOS ONE, 2025, 20 (03):
  • [4] Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease
    Forner, Stefania
    Kawauchi, Shimako
    Balderrama-Gutierrez, Gabriela
    Kramar, Eniko A.
    Matheos, Dina P.
    Phan, Jimmy
    Javonillo, Dominic, I
    Tran, Kristine M.
    Hingco, Edna
    da Cunha, Celia
    Rezaie, Narges
    Alcantara, Joshua A.
    Baglietto-Vargas, David
    Jansen, Camden
    Neumann, Jonathan
    Wood, Marcelo A.
    MacGregor, Grant R.
    Mortazavi, Ali
    Tenner, Andrea J.
    LaFerla, Frank M.
    Green, Kim N.
    SCIENTIFIC DATA, 2021, 8 (01)
  • [5] Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease
    Stefania Forner
    Shimako Kawauchi
    Gabriela Balderrama-Gutierrez
    Enikö A. Kramár
    Dina P. Matheos
    Jimmy Phan
    Dominic I. Javonillo
    Kristine M. Tran
    Edna Hingco
    Celia da Cunha
    Narges Rezaie
    Joshua A. Alcantara
    David Baglietto-Vargas
    Camden Jansen
    Jonathan Neumann
    Marcelo A. Wood
    Grant R. MacGregor
    Ali Mortazavi
    Andrea J. Tenner
    Frank M. LaFerla
    Kim N. Green
    Scientific Data, 8
  • [6] Bezafibrate confers neuroprotection in the 5xFAD mouse model of Alzheimer's disease
    Lu, Yubing
    Fujioka, Hisashi
    Wang, Wenzhang
    Zhu, Xiongwei
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2023, 1869 (08):
  • [7] Latency to startle is reduced in the 5xFAD mouse model of Alzheimer's disease
    Story, Darren
    Chan, Emily
    Munro, Nikolas
    Rossignol, Julien
    Dunbar, Gary L.
    BEHAVIOURAL BRAIN RESEARCH, 2019, 359 : 823 - 827
  • [8] Retinal hyperspectral imaging in the 5xFAD mouse model of Alzheimer’s disease
    Jeremiah K. H. Lim
    Qiao-Xin Li
    Tim Ryan
    Phillip Bedggood
    Andrew Metha
    Algis J. Vingrys
    Bang V. Bui
    Christine T. O. Nguyen
    Scientific Reports, 11
  • [9] Early Mitochondrial Defects in the 5xFAD Mouse Model of Alzheimer's Disease
    Sharma, Neelam
    Banerjee, Rupkatha
    Davis, Ronald L.
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 90 (04) : 1323 - 1338
  • [10] Therapeutic Effects of Aripiprazole in the 5xFAD Alzheimer's Disease Mouse Model
    Jeong, Ye Ji
    Son, Yeonghoon
    Park, Hye-Jin
    Oh, Se Jong
    Choi, Jae Yong
    Ko, Young-Gyu
    Lee, Hae-June
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)