Some infinite sums identities

被引:0
|
作者
Meher Jaban
Sinha Sneh Bala
机构
[1] Indian Institute of Science,Department of Mathematics
[2] Harish-Chandra Research Institute,Department of Mathematics
来源
关键词
multiple zeta values; multiple Hurwitz zeta values; 11M32; 11M36;
D O I
暂无
中图分类号
学科分类号
摘要
We find the sum of series of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{i = 1}^\infty {\frac{{f(i)}}{{{i^r}}}} $$\end{document} for some special functions f. The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező’s paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of π.
引用
收藏
页码:819 / 827
页数:8
相关论文
共 50 条