On the Attainable Order of Collocation Methods for Delay Differential Equations with Proportional Delay

被引:0
|
作者
Norio Takama
Yoshiaki Muroya
Emiko Ishiwata
机构
[1] Polyphony Digital Inc.,Department of Mathematical Sciences
[2] Waseda University,Department of Information Sciences
[3] Toho University,undefined
来源
BIT Numerical Mathematics | 2000年 / 40卷
关键词
Delay differential and integral equation; proportional delay; collocation and iterated collocation method; Padé approximant; attainable order;
D O I
暂无
中图分类号
学科分类号
摘要
To analyze the attainable order of m-stage implicit (collocation-based) Runge-Kutta methods for the delay differential equation (DDE) y′(t) = by(qt), 0 < q ≤ 1 with y(0) = 1, and the delay Volterra integral equation (DVIE) y(t) = 1 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tfrac{b}{q}\int {_0^{qt} }$$ \end{document}y(s) ds with proportional delay qt, 0 < q ≤ 1, our particular interest lies in the approximations (and their orders) at the first mesh point t = h for the collocation solution v(t) of the DDE and the iterated collocation solution uit(t) of the DVIE to the solution y(t).
引用
收藏
页码:374 / 394
页数:20
相关论文
共 50 条