Numerical verification of condition for approximately midconvex functions

被引:0
|
作者
P. Spurek
Ja. Tabor
机构
[1] Jagiellonian University,Institute of Computer Science
来源
Aequationes mathematicae | 2012年 / 83卷
关键词
Primary 26A51; Secondary 39B62; 65G40; Midconvex function; convexity; numerical verification;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a normed space and V be a convex subset of X. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \colon \mathbb{R}_+ \to \mathbb{R}_+}$$\end{document}. A function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \colon V \to \mathbb{R}}$$\end{document} is called α-midconvex if\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \left(\frac{x + y}{2}\right)-\frac{f(x) + f(y)}{2}\leq \alpha(\|x - y\|)\quad {\rm for} \, x, y \in V.$$\end{document}It can be shown that every continuous α-midconvex function satisfies the following estimation:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(tx + (1 - t)y) - tf(x)-(1 - t)f(y) \leq \sum_{k=0}^{\infty}\frac{1}{2^k}\alpha(d(2^{kt}\|x - y\|)) \quad {\rm for} \, t \in [0, 1]$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d(t) := 2{\rm dist}(t, \mathbb{Z})}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t \in [0, 1]}$$\end{document}. It is an important problem to verify for which functions α the above estimation is optimal. The conjecture of Páles that this is the case for functions of type α(r) = rp for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p \in (0, 1)}$$\end{document}, was proved by Makó and Páles (J Math Anal Appl 369:545–554, 2010). In this paper we present a computer assisted method to verify the optimality of this estimation in the class of piecewise linear functions α.
引用
收藏
页码:223 / 237
页数:14
相关论文
共 50 条
  • [1] Numerical verification of condition for approximately midconvex functions
    Spurek, P.
    Tabor, Ja.
    [J]. AEQUATIONES MATHEMATICAE, 2012, 83 (03) : 223 - 237
  • [2] On approximately midconvex functions
    Házy, A
    Páles, Z
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 339 - 350
  • [3] Optimality estimations for approximately midconvex functions
    Tabor, Jacek
    Tabor, Jozef
    Zoldak, Marek
    [J]. AEQUATIONES MATHEMATICAE, 2010, 80 (1-2) : 227 - 237
  • [4] Optimality estimations for approximately midconvex functions
    Jacek Tabor
    Józef Tabor
    Marek Żołdak
    [J]. Aequationes mathematicae, 2010, 80 : 227 - 237
  • [5] Approximately Midconvex Set-Valued Functions
    Mirmostafaee, Alireza Kamel
    Mahdavi, Mostafa
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (02) : 525 - 530
  • [6] ON STRONGLY MIDCONVEX FUNCTIONS
    Azocar, A.
    Gimenez, J.
    Nikodem, K.
    Sanchez, J. L.
    [J]. OPUSCULA MATHEMATICA, 2011, 31 (01) : 15 - 26
  • [7] Conditionally δ-midconvex functions
    Chudziak, Jacek
    Tabor, Jacek
    Tabor, Jozef
    [J]. AEQUATIONES MATHEMATICAE, 2015, 89 (04) : 981 - 990
  • [8] Conditionally δ-midconvex functions
    Jacek Chudziak
    Jacek Tabor
    Józef Tabor
    [J]. Aequationes mathematicae, 2015, 89 : 981 - 990
  • [10] Midconvex functions in locally compact groups
    Chademan, A
    Mirzapour, F
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (10) : 2961 - 2968