Game-theoretic optimal portfolios in continuous time

被引:0
|
作者
Alex Garivaltis
机构
[1] Northern Illinois University,Department of Economics
来源
关键词
Portfolio choice; Constant rebalanced portfolios; Continuous-time Kelly rule; Minimax; C44; D80; D81; G11;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a two-person trading game in continuous time where each player chooses a constant rebalancing rule b that he must adhere to over [0, t]. If Vt(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_t(b)$$\end{document} denotes the final wealth of the rebalancing rule b, then Player 1 (the “numerator player”) picks b so as to maximize E[Vt(b)/Vt(c)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E[V_t(b)/V_t(c)]$$\end{document}, while Player 2 (the “denominator player”) picks c so as to minimize it. In the unique Nash equilibrium, both players use the continuous-time Kelly rule b∗=c∗=Σ-1(μ-r1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^*=c^*=\varSigma ^{-1}(\mu -r\mathbf 1 )$$\end{document}, where Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} is the covariance of instantaneous returns per unit time, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the drift vector, and 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf 1 $$\end{document} is a vector of ones. Thus, even over very short intervals of time [0, t], the desire to perform well relative to other traders leads one to adopt the Kelly rule, which is ordinarily derived by maximizing the asymptotic exponential growth rate of wealth. Hence, we find agreement with Bell and Cover’s ( Manag Sci 34(6):724–733, 1988) result in discrete time.
引用
收藏
页码:235 / 243
页数:8
相关论文
共 50 条
  • [1] Game-theoretic optimal portfolios in continuous time
    Garivaltis, Alex
    [J]. ECONOMIC THEORY BULLETIN, 2019, 7 (02) : 235 - 243
  • [2] GAME-THEORETIC OPTIMAL PORTFOLIOS
    BELL, R
    COVER, TM
    [J]. MANAGEMENT SCIENCE, 1988, 34 (06) : 724 - 733
  • [3] Game-Theoretic Optimal Portfolios for Jump Diffusions
    Garivaltis, Alex
    [J]. GAMES, 2019, 10 (01):
  • [4] A Game-Theoretic Approach for Optimal Time-of-Use Electricity Pricing
    Yang, Peng
    Tang, Gongguo
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) : 884 - 892
  • [5] Game-Theoretic Estimation for Continuous-Time Systems with Single Time-Delay in the Observations
    Zhao Hongguo
    Wang Wei
    Cui Peng
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2245 - 2250
  • [6] OPTIMAL INSPECTION WITH INADEQUATE RESOURCES - GAME-THEORETIC ANALYSIS
    GOLDMAN, AJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A219 - A219
  • [7] A Stackelberg game-theoretic approach to optimal real-time pricing for the smart grid
    Fan-Lin Meng
    Xiao-Jun Zeng
    [J]. Soft Computing, 2013, 17 : 2365 - 2380
  • [8] A Stackelberg game-theoretic approach to optimal real-time pricing for the smart grid
    Meng, Fan-Lin
    Zeng, Xiao-Jun
    [J]. SOFT COMPUTING, 2013, 17 (12) : 2365 - 2380
  • [9] A game-theoretic approach for selecting optimal time-dependent thresholds for anomaly detection
    Ghafouri, Amin
    Laszka, Aron
    Abbas, Waseem
    Vorobeychik, Yevgeniy
    Koutsoukos, Xenofon
    [J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2019, 33 (04) : 430 - 456
  • [10] A game-theoretic approach for selecting optimal time-dependent thresholds for anomaly detection
    Amin Ghafouri
    Aron Laszka
    Waseem Abbas
    Yevgeniy Vorobeychik
    Xenofon Koutsoukos
    [J]. Autonomous Agents and Multi-Agent Systems, 2019, 33 : 430 - 456