Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra

被引:0
|
作者
G. Papageorgiou
B. J. Schroers
机构
[1] Heriot-Watt University,Department of Mathematics and Maxwell Institute for Mathematical Sciences
关键词
Quantum Groups; Models of Quantum Gravity; Chern-Simons Theories; Gauge Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
We define a theory of Galilean gravity in 2+ 1 dimensions with cosmological constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke group, extending our previous study of classical and quantum gravity in 2+ 1 dimensions in the Galilean limit. We exhibit an r-matrix which is compatible with our Chern-Simons action (in a sense to be defined) and show that the associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the classical double of the extended Heisenberg algebra. We deduce that, in the quantisation of the theory according to the combinatorial quantisation programme, much of the quantum theory is determined by the quantum double of the extended q-deformed Heisenberg algebra.
引用
收藏
相关论文
共 50 条
  • [1] Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra
    Papageorgiou, G.
    Schroers, B. J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11):
  • [2] Wick ordering for q-Heisenberg algebra
    Luo, SL
    [J]. PHYSICS LETTERS A, 1997, 234 (03) : 159 - 162
  • [3] A Q-HEISENBERG ALGEBRA AND A CONTACT METRIC STRUCTURE
    PARK, SU
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (13): : L571 - L574
  • [4] Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra
    Berrada, K.
    El Baz, M.
    Eleuch, H.
    Hassouni, Y.
    [J]. QUANTUM INFORMATION PROCESSING, 2012, 11 (02) : 351 - 372
  • [5] Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra
    K. Berrada
    M. El Baz
    H. Eleuch
    Y. Hassouni
    [J]. Quantum Information Processing, 2012, 11 : 351 - 372
  • [6] Lie algebra of the q-Poincare group and q-Heisenberg commutation relations
    Aschieri, P
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (24-25): : 2895 - 2902
  • [7] Quantum gravity of the Heisenberg algebra
    Almheiri, Ahmed
    Goel, Akash
    Hu, Xu-Yao
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [8] Galilean conformal algebra in two dimensions and cosmological topologically massive gravity
    Hotta, Kyosuke
    Kubota, Takahiro
    Nishinaka, Takahiro
    [J]. NUCLEAR PHYSICS B, 2010, 838 (03) : 358 - 370
  • [9] Cosmological New Massive Gravity and Galilean Conformal Algebra in 2 Dimensions
    Setare, M. R.
    Kamali, V.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [10] Quantum Gravity and the Cosmological Constant Problem
    Moffat, John W.
    [J]. 1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS, 2016, 170 : 299 - 309