In this paper, we will investigate the properties of entire solutions with finite order of the Fermat type difference or differential-difference equations. This is continuation of a recent paper (Liu et al. in Arch. Math. 99, 147–155, 2012). In addition, we also consider the value distribution and growth of the entire solutions of linear differential-difference equation f(k)(z)=h(z)f(z+c),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f^{(k)}(z)=h(z)f(z+c),$$\end{document} where h(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h(z)$$\end{document} is a non-zero meromorphic function, c\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c$$\end{document} is a non-zero constant. Our results partially answer the question given in Liu et al. (Arch. Math. 99, 147–155, 2012).