On Entire Solutions of Some Differential-Difference Equations

被引:0
|
作者
Kai Liu
Lianzhong Yang
机构
[1] Nanchang University,Department of Mathematics
[2] Shandong University,School of Mathematics
关键词
Entire solutions; Differential-difference equations; Finite order; 39B32; 34M05; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will investigate the properties of entire solutions with finite order of the Fermat type difference or differential-difference equations. This is continuation of a recent paper (Liu et al. in Arch. Math. 99, 147–155, 2012). In addition, we also consider the value distribution and growth of the entire solutions of linear differential-difference equation f(k)(z)=h(z)f(z+c),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}(z)=h(z)f(z+c),$$\end{document} where h(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(z)$$\end{document} is a non-zero meromorphic function, c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} is a non-zero constant. Our results partially answer the question given in Liu et al. (Arch. Math. 99, 147–155, 2012).
引用
收藏
页码:433 / 447
页数:14
相关论文
共 50 条
  • [1] On Entire Solutions of Some Differential-Difference Equations
    Liu, Kai
    Yang, Lianzhong
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (03) : 433 - 447
  • [2] Entire Solutions of Some Differential-Difference Equations
    Qi, Xiaoguang
    Yang, Lianzhong
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 579 - 591
  • [3] On entire solutions of some Fermat type differential-difference equations
    LONG Jian-ren
    QIN Da-zhuan
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (01) : 69 - 88
  • [4] On entire solutions of some Fermat type differential-difference equations
    Long, Jian-ren
    Qin, Da-zhuan
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (01) : 69 - 88
  • [5] On entire solutions of some Fermat type differential-difference equations
    Jian-ren Long
    Da-zhuan Qin
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2024, 39 : 69 - 88
  • [6] Entire solutions of nonlinear differential-difference equations
    Li, Cuiping
    Lu, Feng
    Xu, Junfeng
    [J]. SPRINGERPLUS, 2016, 5
  • [7] ENTIRE SOLUTIONS FOR NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS
    Xu, Na
    Cao, Ting-Bin
    Liu, Kai
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [8] ON ENTIRE SOLUTIONS OF CERTAIN TYPE OF DIFFERENTIAL-DIFFERENCE EQUATIONS
    Chen, Zong-Xuan
    Yang, Chung-Chun
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (03): : 677 - 685
  • [9] Entire solutions of certain class of differential-difference equations
    Zhang, Fengrong
    Liu, Nana
    Lu, Weiran
    Yang, Chungchun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 9
  • [10] Entire solutions of Fermat type differential-difference equations
    Liu, Kai
    Cao, Tingbin
    Cao, Hongzhe
    [J]. ARCHIV DER MATHEMATIK, 2012, 99 (02) : 147 - 155