Existence of positive solutions for periodic boundary value problems of second-order impulsive differential equation with derivative in the nonlinearity

被引:0
|
作者
Yajun Tang
Guowei Zhang
机构
[1] Northeastern University,Department of Mathematics
关键词
Positive solution; impulsive equation; fixed point index; Primary 34B15; Secondary 34B18; 34B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are mainly concerned with existence of positive solutions for periodic boundary value problem of second-order impulsive differential equation with derivative in the nonlinearity -u′′+ρ2u=f(t,u,u′),t∈J′,-Δu′t=tk=Ik(u(tk)),k=1,2,…m,u(0)=u(2π),u′(0)=u′(2π),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -u''+\rho ^{2} u=f(t, u, u'), &{} t \in J', \\ -\left. \Delta u'\right| _{t=t_{k}}=I_{k}(u(t_{k})), &{} k=1,2, \ldots m, \\ u(0)=u(2\pi ),\quad u^{\prime }(0)=u^{\prime }(2\pi ), &{} \end{array}\right. \end{aligned}$$\end{document}where f:[0,2π]×R+×R→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:[0,2 \pi ] \times {\mathbb {R}}^{+} \times {\mathbb {R}} \rightarrow {\mathbb {R}}^{+}$$\end{document} is continuous, R+=[0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{+}=[0,+\infty )$$\end{document}, J=[0,2π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=[0,2 \pi ]$$\end{document}, ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho >0$$\end{document}, J′=J\t1,t2,…tm.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^{\prime }=J \backslash \left\{ t_{1}, t_{2}, \ldots t_{m}\right\} .$$\end{document} Some inequality conditions on nonlinearity f and the spectral radius condition of linear operator are presented that guarantee the existence of positive solution to the problem by the theory of fixed point index. The conditions allow that ft,x1,x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( t, x_{1},x_{2}\right) $$\end{document} has superlinear or sublinear growth in x1,x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{1}, x_{2}$$\end{document}.
引用
收藏
相关论文
共 50 条