Dynamics of the FitzHugh–Nagumo system having invariant algebraic surfaces

被引:0
|
作者
Jaume Llibre
Yuzhou Tian
机构
[1] Universitat Autónoma de Barcelona,Departament de Matemátiques
[2] Sun Yat-sen University,School of Mathematics (Zhuhai)
关键词
Global dynamics; FitzHugh–Nagumo system; Invariant algebraic surface; Poincaré compactification; Primary 37C10; Secondary 34C05; 37C70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the dynamics of the FitzHugh–Nagumo system x˙=z,y˙=bx-dy,z˙=xx-1x-a+y+cz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x}=z,\;\dot{y}=b\left( x-dy\right) ,\;\dot{z}=x\left( x-1\right) \left( x-a\right) +y+cz$$\end{document} having invariant algebraic surfaces. This system has four different types of invariant algebraic surfaces. The dynamics of the FitzHugh–Nagumo system having two of these classes of invariant algebraic surfaces have been characterized in Valls (J Nonlinear Math Phys 26:569–578, 2019). Using the quasi-homogeneous directional blow-up and the Poincaré compactification, we describe the dynamics of the FitzHugh–Nagumo system having the two remaining classes of invariant algebraic surfaces. Moreover, for these FitzHugh–Nagumo systems we prove that they do not have limit cycles.
引用
收藏
相关论文
共 50 条
  • [1] Dynamics of the FitzHugh-Nagumo system having invariant algebraic surfaces
    Llibre, Jaume
    Tian, Yuzhou
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [2] Invariant algebraic surfaces of the FitzHugh-Nagumo system
    Zhang, Liwei
    Yu, Jiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [3] Global Dynamical Behavior of FitzHugh–Nagumo Systems with Invariant Algebraic Surfaces
    Liwei Zhang
    Jiang Yu
    Xiang Zhang
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [4] Global Dynamical Behavior of FitzHugh-Nagumo Systems with Invariant Algebraic Surfaces
    Zhang, Liwei
    Yu, Jiang
    Zhang, Xiang
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [5] An Invariant Winding Number for the FitzHugh-Nagumo System with Applications to Cardiac Dynamics
    Cytrynbaum, Eric N.
    Paton, Kelly M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (04): : 1893 - 1922
  • [6] GLOBAL DYNAMICS IN THE POINCARE BALL OF THE CHEN SYSTEM HAVING INVARIANT ALGEBRAIC SURFACES
    Llibre, Jaume
    Messias, Marcelo
    Da Silva, Paulo Ricardo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [7] Dynamics of the Lorenz system having an invariant algebraic surface
    Cao, Jinlong
    Zhang, Xiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (08)
  • [8] Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces
    Wu, Kesheng
    Zhang, Xiang
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 244 (01) : 25 - 35
  • [9] Limit dynamics for the stochastic FitzHugh-Nagumo system
    Lv, Yan
    Wang, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 3091 - 3105
  • [10] GLOBAL DYNAMICS OF THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
    Llibre, Jaume
    Messias, Marcelo
    Da Silva, Paulo Ricardo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3137 - 3155