Controller design for human-robot interaction

被引:0
|
作者
Eric Meisner
Volkan Isler
Jeff Trinkle
机构
[1] Rensselaer Polytechnic Institute,Department of Computer Science
来源
Autonomous Robots | 2008年 / 24卷
关键词
Biofeedback; Human-robot interaction; Assistive robotics;
D O I
暂无
中图分类号
学科分类号
摘要
Many robotics tasks require a robot to share the same workspace with humans. In such settings, it is important that the robot performs in such a way that does not cause distress to humans in the workspace. In this paper, we address the problem of designing robot controllers which minimize the stress caused by the robot while performing a given task. We present a novel, data-driven algorithm which computes human-friendly trajectories. The algorithm utilizes biofeedback measurements and combines a set of geometric controllers to achieve human friendliness. We evaluate the comfort level of the human using a Galvanic Skin Response (GSR) sensor. We present results from a human tracking task, in which the robot is required to stay within a specified distance without causing high stress values.
引用
收藏
页码:123 / 134
页数:11
相关论文
共 50 条
  • [1] Controller design for human-robot interaction
    Meisner, Eric
    Isler, Volkan
    Trinkle, Jeff
    [J]. AUTONOMOUS ROBOTS, 2008, 24 (02) : 123 - 134
  • [2] Human-Robot Interaction: Controller Design and Stability
    Nishimura, Satoshi
    Chaichaowarat, Ronnapee
    Krebs, Hermano Igo
    [J]. 2020 8TH IEEE RAS/EMBS INTERNATIONAL CONFERENCE FOR BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2020, : 1096 - 1101
  • [3] Closed-Form Solution to Controller Design for Human-Robot Interaction
    Lacevic, Bakir
    Rocco, Paolo
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (02):
  • [4] A Computational Multicriteria Optimization Approach to Controller Design for Physical Human-Robot Interaction
    Aydin, Yusuf
    Tokatli, Ozan
    Patoglu, Volkan
    Basdogan, Cagatay
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2020, 36 (06) : 1791 - 1804
  • [5] Biomechanically Safe Velocity Controller for Human-Robot Interaction
    Haddadin, Sami
    Haddadin, Simon
    Khoury, Augusto
    Rokahr, Tim
    Parusel, Sven
    Burgkart, Rainer
    Bicchi, Antonio
    Albu-Schaeffer, Alin
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (03) : 175 - 187
  • [6] Design Principles for Safety in Human-Robot Interaction
    Manuel Giuliani
    Claus Lenz
    Thomas Müller
    Markus Rickert
    Alois Knoll
    [J]. International Journal of Social Robotics, 2010, 2 : 253 - 274
  • [7] Computational Tools for Human-Robot Interaction Design
    Porfirio, David
    Sauppe, Allison
    Albarghouthi, Aws
    Mutlu, Bilge
    [J]. HRI '19: 2019 14TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2019, : 733 - 735
  • [8] Design Principles for Safety in Human-Robot Interaction
    Giuliani, Manuel
    Lenz, Claus
    Mueller, Thomas
    Rickert, Markus
    Knoll, Alois
    [J]. INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2010, 2 (03) : 253 - 274
  • [9] A Robust Impedance Controller for Improved Safety in Human-Robot Interaction
    Laubscher, Curt A.
    Sawicki, Jerzy T.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2021, 143 (09):
  • [10] Homotopy-based Controller for Physical Human-Robot Interaction
    Evrard, Paul
    Kheddar, Abderrahmane
    [J]. RO-MAN 2009: THE 18TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, VOLS 1 AND 2, 2009, : 1139 - 1144