We compared, from 2004 through 2006, rates of soil–atmosphere CH4 exchange at permanently established sampling sites in a temperate forest exposed to ambient (control plots; ∼380 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. A total of 880 observations showed net atmospheric CH4 consumption (flux from the atmosphere to the soil) from all static chambers most of the time at rates varying from 0.02 mg m−2 day−1 to 4.5 mg m−2 day−1. However, we infrequently found net CH4 production (flux from the soil to the atmosphere) at lower rates, 0.01 mg m−2 day−1 to 0.08 mg m−2 day−1. For the entire study, the mean (±SEM) rate of net CH4 consumption in control plots was higher than the mean for CO2-enriched plots, 0.55 (0.03) versus 0.51 (0.03) mg m−2 day−1. Annual rates of 184, 196, and 197 mg m−2 for net CH4 consumption at control plots during the three calendar years of this study were 19, 10, and 8% higher than comparable values for CO2 enriched plots. Differences between treatments were significant in 2004 and 2005 and nearly significant in 2006. Volumetric soil water content was consistently higher at CO2-enriched sites and a mixed-effects model identified a significant soil moisture x CO2 interaction on net atmospheric CH4 consumption. Increased soil moisture at CO2-enriched sites likely increases diffusional resistance of surface soils and the frequency of anaerobic microsites supporting methanogenesis, resulting in reduced rates of net atmospheric CH4 consumption. Our study extends our observations of reduced net atmospheric CH4 consumption at CO2-enriched plots to nearly five continuous years, suggesting that this is likely a sustained negative feedback to increasing atmospheric CO2 at this site.